Toxicology Technical Manual

Las Vegas Metropolitan Police Department
Forensic Laboratory
5605 W. Badura Ave. Ste. 120B
Las Vegas, NV 89118
0.0 Title: TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Table of Contents</td>
</tr>
<tr>
<td></td>
<td>DRUGS OF ABUSE IN BIOLOGICAL FLUIDS (BLOOD AND URINE)</td>
</tr>
<tr>
<td>1.0</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.0</td>
<td>Evidence and Workflow</td>
</tr>
<tr>
<td></td>
<td>IMMUNOASSAY SCREENING</td>
</tr>
<tr>
<td>3.0</td>
<td>ELISA Blood Screening</td>
</tr>
<tr>
<td>3.1</td>
<td>EMIT Urine Screening</td>
</tr>
<tr>
<td>3.2</td>
<td>EMIT Required Maintenance</td>
</tr>
<tr>
<td>3.3</td>
<td>Drug Screen – Reagent Preparations</td>
</tr>
<tr>
<td></td>
<td>CONFIRMATION TESTING</td>
</tr>
<tr>
<td>4.0</td>
<td>Confirmation Testing</td>
</tr>
<tr>
<td>4.1</td>
<td>BLOODS</td>
</tr>
<tr>
<td>4.1.01</td>
<td>Amphetamines and Stimulants</td>
</tr>
<tr>
<td>4.1.02</td>
<td>Cocaine/Cocaethylene/Benzoylecgonine</td>
</tr>
<tr>
<td>4.1.03</td>
<td>Cannabinoids</td>
</tr>
<tr>
<td>4.1.04</td>
<td>Narcotic Analgesics</td>
</tr>
<tr>
<td>4.1.05</td>
<td>Phencyclidine</td>
</tr>
<tr>
<td>4.1.06</td>
<td>Benzodiazepines/Z-Drugs</td>
</tr>
<tr>
<td>4.1.07</td>
<td>Carisoprodol and Meprobamate</td>
</tr>
<tr>
<td>4.2</td>
<td>URINE</td>
</tr>
<tr>
<td>4.2.01</td>
<td>AMP/Meth/MDA/MDMA</td>
</tr>
<tr>
<td>4.2.02</td>
<td>Cocaine/Benzoylecgonine</td>
</tr>
<tr>
<td>4.2.03</td>
<td>THCA (Cannabinoid Metabolite)</td>
</tr>
<tr>
<td>4.2.04</td>
<td>Morphine/Codeine</td>
</tr>
<tr>
<td>4.2.05</td>
<td>Hydrocodone</td>
</tr>
<tr>
<td>4.2.06</td>
<td>Phencyclidine</td>
</tr>
<tr>
<td>4.2.07</td>
<td>Benzodiazepines</td>
</tr>
<tr>
<td>4.2.08</td>
<td>6-acetylmorphine</td>
</tr>
<tr>
<td>4.3</td>
<td>Confirmation – Drug Solution Preparations</td>
</tr>
<tr>
<td>4.4</td>
<td>Confirmation – Reagent Preparations</td>
</tr>
<tr>
<td></td>
<td>BLOOD ALCOHOL</td>
</tr>
<tr>
<td>5.0</td>
<td>Ethanol Analysis by Dual Column GC Headspace</td>
</tr>
<tr>
<td>5.1</td>
<td>Blood Ethanol Calculations (Retrograde Extrapolation, Anterograde Extrapolation, and The Widmark Equation)</td>
</tr>
<tr>
<td>5.2</td>
<td>1-Propanol Internal Standard Preparation</td>
</tr>
<tr>
<td>5.3</td>
<td>Mixed Volatile Resolution Check Preparation</td>
</tr>
<tr>
<td>5.4</td>
<td>Whole Blood Positive Ethanol Control</td>
</tr>
<tr>
<td>5.5</td>
<td>Urine Positive Ethanol Control</td>
</tr>
<tr>
<td>5.6</td>
<td>Ethanol Analysis Quality Control</td>
</tr>
<tr>
<td></td>
<td>GENERAL PROCEDURES FOR TOXICOLOGY</td>
</tr>
</tbody>
</table>
6.0 Quality Assurance
7.0 Performance Check of the Hamilton Diluter/Dispenser
8.0 Quality Control Plan

APPENDIX

9.0 References
9.1 Abbreviations Key
9.2 Software Versions

NOTE: Hyperlinks were accurate at the time of manual publication.
1.0 Title: INTRODUCTION

The following drug identification analytical techniques are offered as the recommended procedures currently available with the Las Vegas Metropolitan Police Department (LVMPD) Forensic Laboratory’s Toxicology Detail. This manual was drafted with input and comment from the Forensic Scientists and managers of this laboratory system. In that regard it meets the goal of providing the Laboratory with a workable guideline encompassing established facts, principles, and theories widely accepted by the general scientific community. The intent is to respond to the needs of the profession, the investigative agencies, the courts, and ultimately, the citizens they serve.
LVMPD FORENSIC LABORATORY
TECHNICAL PROCEDURES
TOXICOLOGY

2.0 Title: EVIDENCE HANDLING AND WORKFLOW

The following details the handling of evidence and workflow in the Toxicology Detail of the LVMPD Forensic Laboratory:

2.1 Evidence Handling

2.1.1 Evidence Receipt
Analysis will only be completed on human antemortem samples. Post-mortem samples will be returned to the requesting agency.

Evidence received from the Las Vegas Metropolitan Police Department Evidence Vault and/or authorized drop locations will be tracked and handled using the policies and procedures under section 7.4, Handling of Evidence (Test Items), in the LVMPD Forensic Laboratory Quality Manual. After evidence has been data entered into ACE (Active Control of Evidence), it will be stored in a refrigerator in the Toxicology Lab or in the Forensic Laboratory Evidence Vault unless otherwise indicated.

2.1.2 Evidence Storage
Biological evidence will be stored in a refrigerator in the Toxicology Lab when samples are not in the process of being analyzed unless otherwise indicated.

2.1.3 Evidence Return or Transfer
Upon completion of analysis, the evidence will be resealed with evidence tape, the tape will be initialed and dated, and the chain of custody on the evidence will be signed. An “internal move” to the Toxicology refrigerator location in ACE is required; the evidence is then sent to the LVMPD Evidence Vault or retained for additional testing. NHP evidence will be returned to the NHP.

2.1.4 Requests for Reanalysis by an External Laboratory
Court orders from the Defense for reanalysis by an external laboratory should be forwarded to the Quality Detail. The Quality Detail will verify that the court order contains the necessary information needed to release the evidence for reanalysis. The Quality Detail will then forward the court order to the Toxicology Manager/Supervisor who will ensure that all work has been completed on the case prior to the release of evidence. If further analysis is pending upon request, the Toxicology Manager/Supervisor should contact the requesting agency and/or Prosecutor’s office to inquire if the pending analysis should be completed prior to the release of evidence. The conversation should be documented in the case file. When the evidence is released directly to the Defense or their agent and sent to a laboratory of
their choice, the evidence will be considered unsuitable for reanalysis by the Toxicology Detail upon its return to the Evidence Vault. See Forensic Laboratory Quality Manual Appendix P for further information.

2.2 Evidence

2.2.1 Evidence Description

Blood Kit
A standard blood kit is a white approximately 5” x 3” x 1 ½ " cardboard box. The box contains two (2) 10 mL gray top test tubes (containing sodium fluoride/potassium oxalate) secured in a foam holder.

Urine Kit
A standard urine kit is an approximately 3” x 3” x 3” white cardboard box. The box contains a wide-mouth plastic urine specimen bottle with cap, sized to fit in the box. Wide-mouth plastic urine sample bottles with caps may also be packaged in either plastic or paper bags.

Evidence received in other forms will be described in case notes and on the Laboratory Report of Examination (see section 2.8 Reporting).

2.2.2 Case Information

The analyst will defer to the information on the outside of the blood or urine kit, rather than the request form, for event number, subject name, incident time, incident, etc.

The subject’s first and last name as it appears on the front of the blood or urine kit should match the name on the ACE label. This will be used as the name on the Forensic Laboratory Report of Examination. The first analyst that receives the kit will interpret the name. Subsequent analysts will defer to that interpretation for their report.

If the name on the blood tubes is grossly different than the name on the blood kit, the Forensic Laboratory Report of Examination will reflect the name per blood kit, name per blood tubes. Middle initials and suffixes are typically not entered into ACE, but if they appear on the ACE label and match the information on the blood kit they can be used on the Forensic Laboratory Report of Examination; the name in ACE does not need to be amended to exclude this information.

2.2.3 Blood Tubes

When a standard blood kit is received, it is recommended to use the tube with the most blood for analysis. When evidence is received in forms other than a standard blood kit (e.g., tubes collected at a hospital), the following tubes may be used:

- Gray top (sodium fluoride, potassium oxalate)
- Lavender top (EDTA)
- Pink top (EDTA)
Green top (heparin)
Red top (no preservative)

Whole blood that is clotted but received in the above test tubes may be homogenized prior to use. Serum and plasma, as well as blood collected in light blue top tubes (sodium citrate), serum separator tubes (tiger top), or any other tubes which causes the blood to clot, are not suitable for testing. These samples may be sent to an approved outside laboratory for testing if mitigating circumstances apply.

2.2.4 Sample Suitability
When a sample is determined to be unsuitable for testing (e.g., insufficient sample volume, serum rather than whole blood, etc.) the requesting agency will be notified before cancelling testing. Testing is cancelled only when none of the requested work can be completed. For example, if there is insufficient sample volume to complete a drug screen, testing is cancelled. By contrast, if a sample screens positive for two drugs and one of the drugs has been confirmed but there is insufficient volume to complete the second drug confirmation, testing is considered complete.

2.2.5 Consumption of Evidence
Unnecessary consumption of the sample shall be avoided, but it is occasionally necessary to consume a sample in order to complete the analysis properly. The analyst will document in their case notes and on the Laboratory Report of Examination when the entire sample is consumed.

2.3 Workflow
Casework samples should follow the workflow:
blood alcohol (when requested) => drug screen (when requested) => confirmation (if necessary).

Cases are prioritized in the following order:
1) Cases with a court deadline
2) Felony cases
3) Cases in which public safety is an issue (e.g., suspect has multiple DUI incidents in a short time span awaiting analysis)
4) Routine misdemeanor cases

Workflow Exception
If no drug screen was requested but the blood alcohol result is less than 0.085 g/100 mL, the case is referred to Drug Screening for a standard drug screen.

2.3.1 Casework Samples – Alcohol
Casework samples requested for alcohol analysis will be analyzed according to Chapter 5.0 Ethanol Analysis by Dual Column GC Headspace.
2.3.2 Casework Samples – Drug Screening
Casework samples requested for drug analysis will first be analyzed using a screening technique. Blood samples will be analyzed according to Chapter 3.0 ELISA Blood Screening Procedures. Urine samples will be analyzed according to Chapter 3.1 EMIT Urine Screening Procedure.

Some cases result in more than one blood alcohol kit being drawn with the same event number and different blood draw times. These types of cases are referred to as multiple draw cases. When a multiple draw case requires drug screening, only the first draw will be used. The second draw may be used if there is insufficient sample in the first draw or other extenuating circumstances exist.

Confirmation of drugs will be performed on samples which have positive screening results and/or on samples which the submitting officer requests a confirmation of a drug which the Forensic Laboratory does not have a screening technique.

Because lorazepam has low cross-reactivity to the urine drug screen, samples from Grand Larceny ("Trick Roll") and Drug Facilitated Sexual Assault cases will be confirmed for benzodiazepines regardless of the screening results.

To assist with the confirmation workflow, it is recommended to note on the screening worksheet when the volume of blood in both tubes is less than 4 mL and target drugs that are confirmed in-house.

In most cases, samples received in sexual assault cases will be sent to an outside laboratory for testing. The Toxicology Manager or designee will review all requests involving sexual assaults to make the determination.

2.3.3 Casework Samples – Confirmation
Casework samples needing confirmation analysis will be analyzed according to the procedures outlined in Chapters 4.0 Confirmation Testing, 4.1 (procedures for blood), and 4.2 (procedures for urine).

If sample volume is low, the preferred order of confirmation analysis is:

- For all incidents except Under the Influence of a Controlled Substance:
 1) Illicit drugs/metabolites as defined in NRS 484C.110
 2) Drugs/metabolites not listed in NRS 484C.110

- For Under the Influence of a Controlled Substance incidents, cannabinoids should be confirmed after other controlled substances listed in NAC 453 unless it is known that the subject is under the age of 21.
2.3.4 Outsourcing
Pending Manager or designee approval, casework and Department samples may be sent to an approved outside laboratory to be analyzed for substances for which LVMPD does not have a validated method. These substances may be listed on the request form as drugs suspected. Routinely, only samples from felony cases will be outsourced when all in-house results are negative. If some analysis has been completed in-house prior to outsourcing, a Technical Review will be completed prior to the outsourcing.

2.3.5 Subcontracting
Under special circumstances, casework and Department samples may be sent to an approved outside laboratory to be analyzed for substances for which LVMPD does have a validated method. Toxicology Manager or designee will determine when subcontracting may occur. If some analysis has been completed in-house prior to subcontracting, a Technical Review will be completed prior to the subcontracting.

2.4 Dates of Testing
“Start date of testing” is defined as the date the analyst transfers the evidence into their custody in the LIMS. “End date of testing” is defined as the date the analyst has completed all activities of the analysis, including data review and kit sealing. In most cases this date will be the date the analyst transfers the evidence out of their custody in LIMS. If the nature of testing is such that the analyst must pass the evidence to another analyst prior to completion of testing (e.g., a rush case where results are needed in several days), the analyst will document the “end date of testing” in their case notes.

In the event that the analyst did not transfer the evidence into their custody in the LIMS prior to testing (e.g., the LIMS is unavailable), the analyst will document the “start date of testing” in their case notes.

The dates of testing will be included on the report.

2.5 LIMS
The LIMS utilizes an external application called FA Batch Processing for running samples in batches. After a batch has run, the data is imported from the instrument to the Batching module and then imported into the corresponding worksheet in LIMS. Data entry by the analyst may be necessary in certain circumstances. In the event that the LIMS or LIMS Batching is unavailable, samples may be run outside of the LIMS and the results hand-entered when the system becomes available. The paperwork generated by running the samples outside of the LIMS shall then be uploaded into the Object Repository with the exception of QC packets, which will be stored in Qualtrax.

2.5.1 LIMS Naming Convention
When FA Batch Processing is used for blood alcohol, urine drug screens, and drug confirmation, the number generated equates to Lab Number – unit
record item. For example 14-12345-2 1 indicates the second unit record for the first item of evidence for Lab Number 14-12345.

2.6 QC Packets

2.6.1 QC Packet Naming

QC Packets should be named in the following manner:

<Procedure> QC Packet <Date (MMDDYY)> <Instrument (for blood alcohol and confirmations only)> <Analyst’s Initials>

For example:

- BA QC Packet 041017 GC#5 DK
- ELISA QC Packet 041017 NO
- EMIT QC Packet 041017 DR
- THCB QC Packet 041017 GCMS#9 SW

2.6.2 QC Packet Contents

QC Packets will contain at least:

- load list/sequence
- calibration data
- positive / negative controls
- lot numbers with corresponding expiration dates

See Chapters 3.0 ELISA Blood Screening Procedures and 3.1 EMIT Urine Screening Procedures for additional Drug Screening QC Packet content.

Hardcopies of documents (e.g., lot number sheets, load lists, etc.) that are integrated into an electronic QC Packet must be initialed by the analyst. Page numbers are not required.

2.6.3 QC Packet Storage

QC Packets for casework and Department samples will be stored in Qualtrax.

2.7 Data Not Used

Data that is generated but not reported will be labeled with “data not used,” the reason the data is not used, and the initials and date of the analyst. If the data for a batch or partial batch of samples is not used, the reason may be documented on only the first page of the QC packet of the batch if all the rejected data is contained within the QC packet.

2.8 Reporting

2.8.1 Evidence Description

A description of the evidence will appear on the Laboratory Report of Examination.

2.8.1.1 Blood

When a standard blood kit (as defined in section 2.2.1) is received the analyst will add this statement to the report:
• “That each blood kit received was a standard blood kit containing two gray top tubes of whole blood. Only one blood tube per kit was used for analysis;”

Blood evidence received in forms other than a standard blood kit will be described in detail in a statement on the report. If more than one blood tube contained blood it will be noted which blood tube was used for analysis. For example:
• “That an envelope containing one lavender top tube, one green top tube, and one blue top tube was received. The lavender top tube was used for analysis;”
• “That a blood kit containing one gray top tube of whole blood and one empty gray top tube was received;”

If it is necessary for an analyst to use more than one test tube to complete the requested analyses, the analyst will describe which tubes were used for the analyses. For example:
• “That a standard blood kit containing two gray top tubes of whole blood was received. The first blood tube was used for the drug screen, cocaine and cannabinoids confirmation. The second blood tube was used for benzodiazepines confirmation;”

2.8.1.2 Urine
When a standard urine kit (defined in section 2.2.1) is received the analyst will add this statement to the report:
• “That a standard urine kit containing urine in a wide-mouth plastic urine specimen bottle with cap was received;”

Urine evidence received in forms other than a standard urine kit will be described in detail in a statement on the report. For example:
• “That a metal can containing a plastic conical tube of urine was received;”

2.8.2 When No Conclusion Can Be Reached
Occasionally circumstances are such that no result can be obtained for a sample. Some such circumstances are listed below followed by the statements that should be used on the Laboratory Report of Examination:
• Quantity of blood is not sufficient to complete the test – “unable to determine due to insufficient quantity of blood/urine”
• Substance interferes with analyte of interest – “unable to determine due to interference”
2.8.3 When Further Analysis Is Needed

Occasionally there is not time to complete all confirmation analyses prior to a court date. The following verbiage will be used on the report for those analytes that will be completed subsequently:

- “Further analysis pending.”

A supplemental report will then be issued with the subsequent results. The supplemental report will contain a statement referencing the analyst, distribution date, and results of the original report as in the example below. This statement should be listed below the confirmation results table on the supplemental report.

- See Las Vegas Metropolitan Police Department Drug Screening/Confirmation Report of Examination by Forensic Scientist Jane Doe, #00000, distributed on September 20, 2018 for Immunoassay Screen, Amphetamine, and Cannabinoid results.

2.8.4 Amended Reports

When a report is amended, the author of the report will add the following statement directly under the report header:

- The report is amended to {reason for the amendment}.

2.8.5 Reanalysis

On occasion the original analyst on a case is no longer available to testify on their results and the sample must be reanalyzed. The reanalysis report will reference the original report as in the example below. The statement should be listed directly under the report header.

- See Las Vegas Metropolitan Police Department Blood Alcohol Report of Examination by Forensic Scientist Jane Doe, #00000, distributed on September 20, 2018 for original blood alcohol results.
2.9 Report Distribution
Distribution to appropriate parties is handled by the LIMS, the Forensic Lab’s support staff, Toxicology Forensic Scientists, Toxicology Supervisor, or Toxicology Manager.

When analysis has been subcontracted or outsourced on cases where some work has been completed in-house, the LVMPD report will be released at the same time as the subcontracted/outsourced report when possible.

For LVMPD cases, a hard copy of the subcontracted/outsourced report will be sent to Records to be scanned into OnBase. An electronic version will be sent to Traffic@LVMPD.com and to the Traffic Investigative Specialist, if applicable. For NHP cases, the subcontracted/outsourced report will be emailed to the main NHP contact (contact information is located at H:\CB\Forensics\Toxicology\Contacts). For other jurisdiction cases, the subcontracted/outsourced report will be sent by US mail by a LEST, or emailed to the requester.

2.10 Toxicology Request Form (LVMPD547)
The Toxicology Request Form for LVMPD cases will be scanned into OnBase. The purpose of this is to provide information related to what analysis has been requested by the officer, to assist entities outside of the laboratory (e.g., DA’s, Investigative Specialists) with case compilation. The copy of the Toxicology Request Form stored in the case file in LIMS may contain additional information added by the laboratory during the course of analysis.

2.11 Department Drug Testing
The above rules for evidence handling and workflow will apply to Department Samples except as indicated below.

2.11.1 Department Drug Testing samples will be handled as outlined in the LVMPD Department Manual section 5/110.01 – General Fitness for Duty and a Drug Free Workplace.

2.11.2 Department Drug Testing samples, including random (RA), reasonable suspicion (RS), pre-employment (PE), transfer (TR), recruit (patrol academy (ACA) or corrections academy (DSD)), voluntary (VO), and samples from commissioned supervisors collected by the Critical Incident Review Team (CIRT) are delivered to the Forensic Laboratory. These samples are logged into a spreadsheet by laboratory staff. The samples are stored in a Toxicology refrigerator and will have labels placed upon the urine sample trays to display the status of a batch.

2.11.3 Flaws
Samples will be rejected for testing for the following flaws:
- Box not checked “Yes” for temperature check
- Specimen ID on seal and chain-of-custody form do not match
- Donor’s initials are missing from seal
- Seal is broken
• Insufficient sample volume to complete testing

The following flaws may be corrected with a memo from the collector if the collector has retained sufficient information:
 • The collector’s signature and printed name are missing on form
 • No check mark for how donor identified

2.11.4 “Start date of testing” for Department samples urine drug screens will be documented on the QC packet. If the sample is negative “end date of testing” for Department sample urine drug screens will be the date the analyst drafts the report memo. If a sample screens positive Section 2.4 will be followed for “end date of testing”. These samples are not analyzed using the LIMS.

2.11.5 Department samples that confirm positive for drugs, alcohol, and/or adulterants, and all samples from commissioned supervisors (CIRT) are considered evidence. They are entered into ACE and stored refrigerated until they are transferred to the Evidence Vault.

2.11.6 The following types of samples will be entered into LIMS
 • All CIRT samples
 • Any sample that requires a drug confirmation
 • Any RS sample on a drug screen batch or blood alcohol batch analyzed utilizing LIMS

If the sample confirms positive it will be marked “confidential” in LIMS by the Toxicology Manager or Supervisor.

2.11.7 Disposal
Department samples that are negative (excluding those from commissioned supervisors (CIRT) and RS samples) will be disposed of in a biohazard bin as soon as practicable after the final report has been distributed. RS samples will not be disposed of until instructed to do so by the Toxicology Manager/designee.
3.0 Title: ELISA BLOOD SCREENING PROCEDURES

Purpose and Scope
This procedure is intended to qualitatively determine the presence of eight analytes/panels of drugs in biological blood samples received into the laboratory, utilizing Enzyme Linked Immunosorbent Assay (ELISA). The panels, their specific analytes, and their cut-off concentrations are:

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Cut-off Concentration</th>
<th>Specific Analytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphetamines</td>
<td>20 ng/mL</td>
<td>d-Methamphetamine and MDMA</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>25 ng/mL</td>
<td>Alprazolam, Diazepam, Nor-diazepam, Oxazepam, and Temazepam</td>
</tr>
<tr>
<td>Cannabinoids</td>
<td>10 ng/mL</td>
<td>THC Carboxylic Acid</td>
</tr>
<tr>
<td>Carisoprodol</td>
<td>500 ng/mL</td>
<td>Carisoprodol and Meprobamate</td>
</tr>
<tr>
<td>Cocaine</td>
<td>50 ng/mL</td>
<td>Benzoylcegonine, Cocaethylene</td>
</tr>
<tr>
<td>Opiates</td>
<td>10 ng/mL</td>
<td>Codeine, Hydrocodone, and Morphine</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>10 ng/mL</td>
<td>Oxycodone and Oxymorphone</td>
</tr>
<tr>
<td>PCP</td>
<td>10 ng/mL</td>
<td>Phencyclidine</td>
</tr>
</tbody>
</table>

NOTE: Refer to assay inserts for complete cross-reactivity guide

Principle
Enzyme Linked Immunosorbent Assay (ELISA) Drug Screening is a competitive, solid-phase, heterogeneous immunoassay used for the preliminary identification of drug analytes in blood. Samples, standards, blank, and controls are combined with an enzyme-labeled drug conjugate and added to individual wells coated with a target drug antibody. During the incubation period, free drug and enzyme-labeled conjugate compete for binding sites on the antibody. The wells are washed to remove unbound drug and substrate is added to react with the enzyme-bound drug, producing color. The samples are read with an automatic immunodiagnostic analyzer at a test and reference wavelength. The absorbance is inversely proportional to the amount of drug present in that well.

Instrumentation
The instrument used for the analysis is a Dynex DSX Automated ELISA System. A copy of the instrument parameters is located within the method validation documentation.

Retention of Standards
The current compiled results of a run and its corresponding QC Packet consists of the following:
- Batch Sheet
- Sample Caddy Load List
- Dynex Analysis Results for all Drug Panels
- Instrument Self-Test
- Lot Sheet

Materials
- 16 x 100 mm silanized glass culture tubes*
- 12 x 75 mm glass culture tubes
- 12/13 mm safe-t-flex caps
- Standard control bottles
- Reagent bottles
- DSX reagent tips (white)
- DSX sample tips (blue)
* Other size tubes may be used as necessary

Reagents

Negative Whole Blood (See Section 6.6.1.1 for QC requirements. Store in the freezer. After thawing, store in the refrigerator)

Drug Solutions (See Chapter 3.3 for preparation instructions and Section 6.3.1 for QC requirements. Store in the freezer.)
- Blood Screen Working Solution (Standard and Control):
 1 µg/mL Morphine/Oxymorphone/PCP/THCA, 2.0 µg/mL d-Methamphetamine, 2.5 µg/mL Oxazepam, 5 µg/mL Benzoylcegonine, 50 µg/mL Carisoprodol in methanol

Anti-drug Coated Plates (store per manufacturers’ recommendations)
- Benzodiazepine Plate
 OraSure: Benzodiazepines Intercept Micro-Plate EIA Cat. No.: 1110IB or equivalent
- Cannabinoid Plate
 Immunalysis: Cannabinoids (THCA/THC) Direct ELISA Kit Cat. No.: 205-0480 or equivalent
- Carisoprodol Plate
 Immunalysis: Carisoprodol Direct ELISA Kit Cat. No.: 231-0480 or equivalent
- Cocaine Plate
 OraSure: Cocaine Metabolite Intercept Micro-Plate EIA Cat. No.: 1122IB or equivalent
- Methamphetamine Plate
 OraSure: Methamphetamines Intercept Micro-Plate EIA Cat. No.: 1104IB or equivalent
- Opiate Plate
 OraSure: Opiates Intercept Micro-Plate EIA Cat. No.: 1150IB or equivalent
- Oxycodone Plate
 Immunalysis: Oxycodone Direct ELISA Kit Cat. No.: 221B-0480 or equivalent
- PCP Plate
 OraSure: PCP Intercept Micro-Plate EIA Cat. No.: 1154IB or equivalent
NOTE: Immediately after opening any Immunalysis assay (Carisoprodol, Oxycodone and THC) identify each plate by coloring the top of the strips. The following coloring reference should be used during casework:
- Carisoprodol – Blue
- Oxycodone – Red
- THC - Green

Kit Reagents (store in the refrigerator)
- Enzyme-labeled Drug Conjugate (OraSure and Immunalysis)
- Substrate Reagent: Tetramethylbenzadine (TMB) (OraSure and Immunalysis)
- OraSure Oral Fluid Negative Calibrator
- OraSure Oral Fluid Cut Off Calibrator
- Immunalysis Synthetic Urine Negative Calibrator
- Immunalysis Synthetic Urine Analyte Specific Positive Control

Kit Reagents (store at room temperature)
- Forensic Specimen Diluent
- Stopping Reagents: Sulfuric Acid (OraSure) and Hydrochloric Acid (Immunalysis)

Remove drug assay kits, reagents, working solutions, and whole blood from the storage location to allow them to equilibrate to room temperature prior to using.

Reagent QC
Methanol working solutions and negative whole blood are QC checked prior to use. All other commercially prepared reagents are verified concurrently with use. All passing criteria for a batch (see Batch Acceptance Criteria section) must be met.

Standards, Blank, and Positive Control Preparation
Note: Silanized vials / test tubes must be used for preparing every standard and control containing THCA prior to the Sample Preparation step below.

The standards, blank, and positive control must be freshly prepared in blood the same day as casework samples on the batch.

Standards, blank, and control are prepared in labeled 16 x 100 mm silanized glass culture tubes using negative whole blood and the specified drug working solution in the volumes listed below.

<table>
<thead>
<tr>
<th></th>
<th>Volume of Blood Drug Working Stock Solution</th>
<th>Volume of Negative Whole Blood</th>
<th>Final Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>0 μL</td>
<td>1 mL</td>
<td>1 mL</td>
</tr>
<tr>
<td>Low Standard</td>
<td>10 μL</td>
<td>1990 μL</td>
<td></td>
</tr>
<tr>
<td>Cutoff Standard</td>
<td>20 μL</td>
<td>1980 μL</td>
<td></td>
</tr>
<tr>
<td>High Standard</td>
<td>40 μL</td>
<td>1960 μL</td>
<td></td>
</tr>
<tr>
<td>Positive Control</td>
<td>40 μL</td>
<td>1960 μL</td>
<td>2 mL</td>
</tr>
</tbody>
</table>
The positive control is prepared in 2 mL aliquots, but may be made in other volumes depending on the amount needed for each run. This positive control will be placed at the beginning, after every ten samples and at the end of the batch.

Sample Preparation

1. Remove blood samples from refrigerator and allow them to equilibrate to room temperature.
2. Ensure the blood vial to be analyzed has the following information placed upon it: Lab number/item number, rack position number, and the analyst's initials.
3. Label glass culture tubes with a LIMS generated barcode label, containing the Lab number/item number and rack position number.
4. Blood vials must be mixed to re-suspend cells prior to dilution.
5. Using the diluter/dispenser, prepare 1:11 dilutions for all samples, standards, blank, and controls, (i.e., aspirate 100 μL of sample and dispense with 1000 μL of forensic specimen diluent) into appropriate labeled glass culture tubes.
6. Flush diluter tip 2-3 times with diluent after each dilution. Wipe diluter tip with a lab wipe.
7. Vortex glass culture tubes on low to homogenize blood and diluents prior to placing on instrument. Ensure that no bubbles are visible in the sample.

Batch Acceptance Criteria

Standards and blank must be run at the beginning of every plate. Before reporting out a result based on the ELISA method, the following criteria must be met:

- The mean optical density (OD) of the blank must be greater than the mean OD of the low standard which must be greater than the mean OD of the cut-off standard which must be greater than the mean OD of the high standard (i.e., blank>low>cut-off>high).
- There must be at least 0.05 separation between the mean OD values of all standards and the blank, without all positive standards resembling blank sample OD values.
- Individual standard/blank OD data readings must not overlap with other standard/blank OD readings.
- The OD values of the cut-off standard must result in a coefficient of variation (CV) of ≤ 20% for mean OD values greater than 0.600 and ≤ 25% for mean OD values less than or equal to 0.600.

If these criteria are not met, the plate is invalid and samples must be reanalyzed for each plate that fails.

- If a positive control fails, the case samples bracketed by the two valid controls immediately before and after the failed control must be reanalyzed. They may be reanalyzed off-line or the entire plate may be reanalyzed. If more than one control fails to give a positive result, the entire batch is invalid and must be reanalyzed for that drug/class.
It is noted that even though all acceptance criteria are met within a batch, the drug screen analyst must rely on their training and experience to determine if any anomalies exist that do not fall into the categories discussed above. In these instances the analyst should discuss the anomaly/anomalies with the Toxicology Manager or Supervisor in order to determine if all or part of a batch should be repeated to ensure that the reported results are accurate. If the decision is made to repeat all or part of a batch, the discussion should be documented in the case file.

Note: Data from the Dynex DSX is transferred from the instrument directly into a worksheet in the Forensic Laboratory’s LIMS, except for the mean values of the optical density (O.D.) of the cut-off standard and the blank. These values are an average of two results generated for each standard. The DSX software reports these averages, but does not save these values in its text files. Therefore, the LIMS must perform this calculation in order to generate the value for the worksheet. Due to differences in rounding, the value on the worksheet generated by the LIMS can be ±0.001 of the value in the DSX data packet.

Reanalysis

If a plate needs to be reanalyzed it may be reanalyzed on the same day.

Some plates can be analyzed or reanalyzed 24 to 48 hours after the initial sample preparation. See table below for timeline. If analysis on a different day is needed, the sample tubes, standards, blank, and controls must be capped and placed in the refrigerator. The standards, blank, and controls must be analyzed the same day the samples are analyzed.

<table>
<thead>
<tr>
<th>Plate</th>
<th>Analyze 24 hours after initial preparation</th>
<th>Analyze 48 hours after initial preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzodiazepine</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cannabinoid</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Carisoprodol</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Cocaine</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Opiate</td>
<td>✓</td>
<td>NO</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Phencyclidine</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

During method development it was observed that an O.D. greater than 3.50 will produce an “OVER” reading. Any casework sample having a value of “OVER” will be repeated. It can be repeated with standards, blank, and controls off-line.

Reporting

The DSX software automatically evaluates the O.D. value of the sample by comparing it to the mean O.D. value of the cutoff. For reporting, samples with O.D. values greater than the mean O.D. value of the cutoff will be reported as negative; samples with O.D. values less than or equal to the mean O.D. value of the cutoff will be reported as positive.
NOTE: Blood samples from commissioned supervisors (CIRT) will only be screened using the cannabinoid, cocaine, methamphetamine, opiate, and phencyclidine plates. See LVMPD Department Manual section 5/110.01 – *General Fitness for Duty and a Drug Free Workplace* for further information.
3.1 Title: EMIT URINE SCREENING PROCEDURE

Purpose and Scope
This procedure is intended to qualitatively determine the presence of seven analytes/classes of drugs in biological urine samples received into the laboratory, utilizing Enzyme-Multiplied Immunoassay Technique (EMIT). The classes, their specific analytes, and their cut-off concentrations are:

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Cut-off Concentration</th>
<th>Specific Analytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphetamines</td>
<td>500 ng/mL</td>
<td>Amphetamine and Methamphetamine</td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td>200 ng/mL</td>
<td>Nordiazepam, Oxazepam, Temazepam, α-Hydroxyalprazolam and α-Hydroxytriazolam</td>
</tr>
<tr>
<td>Cannabinoids</td>
<td>50 ng/mL</td>
<td>THC Carboxylic Acid</td>
</tr>
<tr>
<td>Cocaine</td>
<td>150 ng/mL</td>
<td>Benzoylcegonine</td>
</tr>
<tr>
<td>Ecstasy</td>
<td>300 ng/mL</td>
<td>Methylendioxymethamphetamine (MDMA)</td>
</tr>
<tr>
<td>Opiates</td>
<td>2,000 ng/mL</td>
<td>Morphine, Codeine, and Hydrocodone</td>
</tr>
<tr>
<td>PCP</td>
<td>25 ng/mL</td>
<td>Phencyclidine</td>
</tr>
</tbody>
</table>

NOTE: Refer to assay inserts for complete cross-reactivity guide

Principle
The EMIT (Enzyme Multiplied Immunoassay Technique) II Plus Assay is a homogenous enzyme immunoassay technique used for the analysis of specific drug analytes. The assay is based on competition between drug in the specimen and drug labeled with the enzyme glucose-6-phosphate dehydrogenase (G6PDH) for antibody binding sites. Enzyme activity decreases upon binding to the antibody, so the drug concentration in the specimen can be measured in terms of enzyme activity. Active enzyme converts nicotinamide adenine dinucleotide (NAD) to NADH, resulting in an absorbance change that is measured spectrophotometrically at 340 nm. The absorbance is directly proportional to the amount of drug present. Endogenous serum G6PDH does not interfere because the coenzyme NAD functions only with the bacteria (*Leuconostoc mesenteroides*) enzyme employed in the assay.

Instrumentation
The instrument used for the analysis is a Siemens Healthcare Diagnostics Inc. EMIT Analyzer Viva-E model. A copy of the instrument parameters is located within the method validation documentation.
Retention of Standards
The current compiled results of a run and its corresponding QC Packet consist of the following:

- Worklist Orders Report
- Load List
- Controls Report
- Quality Controls Report
- Calibration Report
- Blank Rotor Results
- Reagent Info
- Calibrators and Controls Lot Numbers
- PDF files of the Viva-E analysis results

The QC Packet is maintained in Qualtrax.

Materials
- Plastic Disposable Transfer Pipettes
- 5 mL-13 x 75 mm plastic frosted test tubes
- 2 mL Pediatric Sample Cups
- Pediatric Sample Cup Adapters

Reagents
Negative Urine (See Section 6.6.2.1 for QC requirements. Store in the freezer. After thawing, store in the refrigerator)

Urine Screen Working Solutions (See Chapter 3.3 for preparation instructions and Section 6.3.1 for QC instructions. Store in the freezer.)
- Urine Screen Working Solution (Calibrator and Control):
 - 7.5 μg/mL Benzoylecgonine, 15 μg/mL MDMA, 25 μg/mL Methamphetamine, 100 μg/mL Morphine, 10 μg/mL Oxazepam, 1.25 μg/mL PCP, 2.5 μg/mL THCA in methanol

Chemicals (store at room temperature)
- System Solution
- 0.1 M Sodium Hydroxide Solution
- Sodium Hypochlorite Solution
- 0.1 M Hydrochloric Acid Solution

Substrate/Enzyme Reagents (store in the refrigerator)
- Cannabinoid Assay
- Ecstasy Assay
- Cocaine Metabolite Assay
- Phencyclidine Assay
- Opiate Assay
- Benzodiazepine Assay
- Amphetamines Assay
Validity (Adulterants) Reagents (store in the refrigerator)
- Oxidant Validity Test
- Creatinine Validity Test
- Nitrite Validity Test
- Specific Gravity Validity Test
- pH Validity Test

Calibrators and Controls (store in the refrigerator)
- Negative Drug Control: Level 0
- High Drug Control: Level 5
- 6 AM/Ecstasy Drug Control: Level 4
- Negative Validity Calibrator
- Adulterant Validity Controls: Levels 1, 2, 3 & 4
- Chromium Validity Calibrator: Level 50
- Chromium Validity Control: Level 100
- Creatinine Validity Calibrators: Levels 2 & 20
- Specific Gravity Validity Calibrators: Levels 1.0030 & 1.0200
- pH Validity Calibrators: Levels 2.0, 3.0, 4.5, 9.0, 11.0 & 12.0
- Nitrite Validity Calibrator: Level 500

Reagent QC
Except for the in-house prepared Urine Screen Working Solutions and negative urine, all reagents are commercially prepared. These reagents are QC’ed concurrently with use. All passing criteria for a batch (see **Acceptance Criteria**) must be met.

Calibrator Preparation
1) Allow working solution to equilibrate to room temperature prior to pipetting.
2) Add 100 μL of the Urine Screen Standard Working Solution to a 5 mL Class A volumetric flask. QS to 5 mL with negative urine and mix. Prepare fresh daily for one time use. Variations to the formulations must be approved by the Forensic Toxicology Manager or designee.
3) Using a disposable transfer pipette, aliquot a minimum of 0.25 mL of sample into a pediatric sample cup.

Positive Control Preparation
1) Allow working solution to equilibrate to room temperature prior to pipetting.
2) Add 150 μL of the Urine Screen Control Working Solution to a 5 mL Class A volumetric flask. QS to 5 mL with negative urine and mix. Prepare fresh daily for one time use. Variations to the formulations must be approved by the Forensic Toxicology Manager or designee.
3) Using a disposable transfer pipette, aliquot a minimum of 0.25 mL of sample into a pediatric sample cup.
Sample Preparation
1) Remove samples from the refrigerator and allow to equilibrate to room temperature.
2) For split Department samples, separate D and E sample cups, using D samples for analysis.
3) Prior to analysis, ensure the urine sample to be analyzed has the following information placed upon it: Lab number/item number (casework only), analyst’s initials, and sample position.
4) Create a Worklist in either LIMS or WinTox6. Order a positive control prior to case/Department samples, after every 10 samples throughout the batch, and at the end of the run.
5) Using the Worklist create a Loadlist in the Viva-E software. The Loadlist must be included in the QC Packet, unless WinTox software is used.
6) Using the Worklist, label 13x75 mm test tubes with Sample ID and position.
7) Using a disposable transfer pipette, aliquot a minimum of 0.5 mL of sample into 13x75 mm test tube. Pediatric sample cups and pediatric sample cup adapters may be used for limited volume samples (i.e., < 0.5 mL), and must contain a minimum of 0.25 mL of solution.

Procedure
1) Calibrate the instrument per Test Panel requirements.
2) Ensure calibration meets criteria specified below (see Calibration).
3) Load samples and positive controls on the sample rotor wheel, verifying positions with the Loadlist/Worklist.
4) Analyze samples and positive controls.
5) Evaluate results using acceptance criteria below (see Sample Batch).

Test Panels
Several sample types are analyzed in the Toxicology Detail, including Department samples and legal casework (forensic) samples. Each of these sample types have specific drug classes and/or adulterant tests which must be performed. The table below details the classes and adulterant tests needed.
Department Samples
Reasonable Suspicion (RS)
Pre-Employment (PE)
Commissioned Academy (ACA)
Corrections Academy (DSD)
Voluntary (VO)

Negative Urine
7-Panel + Adulterants	7-Panel	6-Panel + Adulterants
CoCAine | CoCAine | CoCAine
Ecstasy | Ecstasy | Ecstasy
Amphetamines | Amphetamines | Amphetamines
Opiates | Opiates | Opiates
PCP | PCP | PCP
THC-carboxylic acid | THC-carboxylic acid | THC-carboxylic acid
Benzodiazepines | Benzodiazepines | Adulterants
Adulterants | | Adulterants

Forensic Samples

Department Samples
Random (RA)
Transfer (TR)
CIRT

LIMS
Department sample drug screening need not be completed in LIMS. Department samples that screen positive will be entered into the LIMS, the results will be hand-entered, and the paperwork generated shall then be uploaded into the Object Repository. QC Packets will be stored in Qualtrax.

Acceptance Criteria

Calibration
Prior to analyzing samples and reporting out results based on the screening method, the standard/calibrator results will automatically be evaluated by the software. Only after the standards/calibrators have met passing criteria will samples be analyzed on the instrument. In addition, the difference between the replicate measurements for each calibrator cannot be > 0.015 dAbs/m.

Review the control values in the Cut Neg/Sep and Hi Cut/Sep columns on the Quality Controls Report. The actual separation (Cut Neg and Hi Cut) must be greater than the expected separation (Sep). Expected separation values are located at H:\CB\Forensics\Toxicology\SCREENS\Urine Screens--VIVA-E\EMIT Assay Separations. If a control fails it can be rejected and remeasured. If it fails a second time, the drug assay will be recalibrated.

Sample Batch
Ensure that the in-house controls are recorded as POSITIVE by the software throughout the batch.
- If a **POSITIVE** result is not obtained for one of these in-house controls, the samples/specimens bracketed by valid controls prior to and following the failed control, must be reanalyzed for that drug/class in a future batch. If more than one control fails to give a **POSITIVE** result, the entire batch is invalid and must be reanalyzed for that drug/class.

Confirm that results were obtained for all tests for all samples.
- If any sample needs to be repeated (e.g., “rejected” appears as the result) the result can be rejected and measured again on the same day. If results are not obtained a second time, the sample should be repeated on the next calibrated batch.

It is noted that even though all acceptance criteria are met on a batch, the drug screen analyst must rely on their training and experience to determine if any anomalies exist that do not fall into the categories discussed above. In these instances the analyst should discuss the anomaly/anomalies with the Toxicology Manager or Supervisor in order to determine if all or part of a batch should be repeated to ensure that the reported results are accurate. If the decision is made to repeat all or part of a batch, the discussion should be documented in the case file.

Specimen Validity Testing
The Department Drug Testing program requires a urine sample to be tested for indications of adulteration and substitution. A preliminary test gives a qualitative determination as to whether the sample is consistent with human urine (whether the sample has been substituted with other liquids) and whether the sample contains commercially available adulterants or other common household items. This is done primarily by the Siemens Syva EMIT Viva-E Analyzer. Samples that give abnormal results for creatinine and specific gravity are suspected of substitution. Proof of substitution requires both the creatinine to be below 2 mg/dL **AND** the specific gravity to be ≤ 1.0010 or ≥ 1.0200. Samples that give abnormal results for pH, Nitrites or Oxidants are suspected of adulteration. Proof of adulteration requires a pH of < 3 or ≥ 11, Nitrites of ≥ 200 µg/mL OR Oxidants of ≥ 50 µg/mL.
- If a sample is suspected of either substitution or adulteration, it will first be repeated on a different calibrated batch. If the sample still gives abnormal results indicating substitution or adulteration, further testing may be required.

Reporting
The Viva-E software automatically evaluates the absorbance value of the sample by comparing it to the absorbance value of the cutoff. Samples with absorbance values greater than or equal to the cutoff are reported as positive. Samples with absorbance values less than the cutoff are reported as negative. Negative reports will be issued through the LIMS for casework samples. Negative Department samples will be reported in memo format to the Health Detail.

Enter results for all Department samples into the Tox spreadsheet found at H:\CB\Forensics\Toxicology\SCREENS\Dept Sample & Casework Spreadsheets.
Record daily and weekly maintenance on the s10056_Viva-E_Daily_WklyChecklist form 5410.

There is no end-of-day procedure that must be followed. Before going into standby mode the instrument will automatically clean the reagent needle and the sample needle.

Daily Maintenance
Daily maintenance is to be completed prior to running samples or controls.

- Fill water container if low with system liquid and distilled/purified water (25 mL system liquid per 10 L water)
- Empty waste container if full or if running a batch will fill up the waste containers
- Check cuvette rotor blank results (results should be less than 0.0200) and replace rotor if necessary
- Fill HCl bottle in the reagent rotor with 0.1 M HCl
- Fill tube in W position of sample rotor with sodium hypochlorite solution
- Remove cuvette cover, visually check wash arm and cuvette rotor, and manually check mixers/mixer belts
- Make sure the cooling unit is on and operating correctly
- Fill system

Weekly Maintenance
Weekly maintenance will be performed when the instrument is in use.

Perform a needle rinse. Fill the needle rinse and HCl bottles on the reagent rotor and place a tube filled with fresh sodium hypochlorite in position W on the sample rotor. From the main menu select “special functions”, then “rotor systems”, then double click “rotor/needle rinse” and select “needle rinse”.

Check syringes and Teflon tips for air bubbles and leakage. Clean or replace syringes if necessary.

Monthly Maintenance
Rinse water and waste containers with 0.1 M NaOH to clean. Afterward, rinse several times with distilled/purified water to remove residue.

Quarterly Maintenance
- Replace mixer belt
- Replace water filter
- Replace drying block on wash arm

Semi-Annual Maintenance (performed by a field service engineer)
- Perform a system clean and rinse
- Perform Quarterly Maintenance

As Needed Maintenance
- Replace cuvette rotor (every 10,000 tests or after SD errors)
- Replace lamp
- Fill cooling unit with cooling liquid (store at room temp)
3.3 Title: DRUG SCREEN – REAGENT PREPARATIONS

Note: Variations to the formulations must be approved by the Forensic Toxicology Manager, or designee.

Blood Drug Working Solutions

Preparation:
1. Standards and controls are prepared from different manufacturers (e.g., Cerilliant used for standards, Cayman Chemical used for controls).
2. THCA stock solutions must be derived from (-)-11-nor-9-Carboxy –Δ9-THC (e.g., Cerilliant item number T-018).
3. Methamphetamine stock solutions must be derived from S(+)-Methamphetamine (e.g., Cerilliant item number M-020).
4. Expiration date is one year from date of preparation or earliest expiration/use by/retest date of a component of the preparation, whichever is sooner.
5. Store in the freezer.

Note: Silanized vials / test tubes must be used for every standard and control containing THCA.

<table>
<thead>
<tr>
<th>Volume to Pipette</th>
<th>Stock Solution</th>
<th>GC Grade Methanol Volume</th>
<th>Working Solution Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 µL</td>
<td>1.0 mg/mL Benzoylecgonine</td>
<td>QS to 10 mL</td>
<td>5 µg/mL</td>
</tr>
<tr>
<td>500 µL</td>
<td>1.0 mg/mL Carisoprodol</td>
<td></td>
<td>50 µg/mL</td>
</tr>
<tr>
<td>20 µL</td>
<td>1.0 mg/mL S(+)-Methamphetamine</td>
<td></td>
<td>2 µg/mL</td>
</tr>
<tr>
<td>10 µL</td>
<td>1.0 mg/mL Morphine</td>
<td></td>
<td>1 µg/mL</td>
</tr>
<tr>
<td>25 µL</td>
<td>1.0 mg/mL Oxazepam</td>
<td></td>
<td>2.5 µg/mL</td>
</tr>
<tr>
<td>10 µL</td>
<td>1.0 mg/mL Oxymorphone</td>
<td></td>
<td>1 µg/mL</td>
</tr>
<tr>
<td>10 µL</td>
<td>1.0 mg/mL Phencyclidine</td>
<td></td>
<td>1 µg/mL</td>
</tr>
<tr>
<td>100 µL</td>
<td>100 µg/mL THC-carboxylic acid</td>
<td></td>
<td>1 µg/mL</td>
</tr>
</tbody>
</table>

Quality Control:
See section 6.3.1 Quality Control Checks of Drug Stock and Working Solutions for Quality Control procedures.
Urine Screen Working Solutions

Preparation:
1. Calibrators and controls are prepared from different manufacturers (e.g., Cerilliant used for calibrators, Cayman Chemical used for controls).
2. THCA stock solutions must be derived from (-)-11-nor-9-Carboxy –Δ9-THC (e.g., Cerilliant item number T-018).
3. Methamphetamine stock solutions must be derived from S(+)-Methamphetamine (e.g., Cerilliant item number M-020).
4. Expiration date is one year from date of preparation or earliest expiration/use by/retest date of a component of the preparation, whichever is sooner.
5. Store in the freezer.

Note: Silanized amber vials must be used to store working solutions

<table>
<thead>
<tr>
<th>Volume to Pipette</th>
<th>Stock Solution</th>
<th>GC Grade Methanol Volume</th>
<th>Working Solution Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 µL</td>
<td>1.0 mg/mL Benzoylecgonine</td>
<td>QS to 10 mL</td>
<td>7.5 µg/mL</td>
</tr>
<tr>
<td>150 µL</td>
<td>1.0 mg/mL MDMA</td>
<td></td>
<td>15 µg/mL</td>
</tr>
<tr>
<td>250 µL</td>
<td>1.0 mg/mL S(+)-Methamphetamine</td>
<td></td>
<td>25 µg/mL</td>
</tr>
<tr>
<td>1000 µL</td>
<td>1.0 mg/mL Morphine</td>
<td></td>
<td>100 µg/mL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL Oxazepam</td>
<td></td>
<td>10 µg/mL</td>
</tr>
<tr>
<td>12.5 µL</td>
<td>1.0 mg/mL Phencyclidine</td>
<td></td>
<td>1.25 µg/mL</td>
</tr>
<tr>
<td>250 µL</td>
<td>100 µg/mL THC-carboxylic acid</td>
<td></td>
<td>2.5 µg/mL</td>
</tr>
</tbody>
</table>

Quality Control:
See section [6.3.1 Quality Control Checks of Drug Stock and Working Solutions](#) for Quality Control procedures.
4.0 Title: CONFIRMATION TESTING

4.0.1 Purpose and Scope
Confirmation testing is used to determine the identity and concentration of a substance. Currently, the methodology employed for both qualitative identification and quantitative determination is Gas Chromatograph/Mass Spectrometry (GC/MS) selective ion monitoring (SIM) and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). GC/MS SIM and LC/MS/MS may also be used to identify and quantify compounds that are not included in the standard screening panel performed at the LVMPD Forensic Laboratory.

4.0.2 Sample Preparation
Prior to analysis, allow the standards, controls, negative urine or whole blood, blood and urine evidence, and reagents (except as noted) to equilibrate to room temperature. Ensure the vial of blood/container of urine to be analyzed has the Lab number/item number placed upon it. The analyst will place their initials upon the vial of the blood/container of urine to be analyzed.

Vials (extraction, elution, GC/MS, LC/MS/MS) used in the preparation of samples will be labeled consistently and will all bear an identifier traceable to a specific kit in each analyzed batch.

Analysts may assess drug screen data to determine if dilutions are needed on a sample. This assessment is done by comparing O.D. values of the sample to O.D. values of the cutoff calibrator. Dilutions may also be done at the discretion of the analyst.

4.0.3 One-Time Use Solutions
When a solution is prepared to be used in a single examination, its preparation will be recorded with the case documentation instead of being placed in Resource Manager.

4.0.4 Batch Acceptance Criteria
Before reporting out a result based on a confirmatory method, batch acceptance criteria must be met. Batch acceptance criteria may be applied independently for each analyte in a batch. For example, results can be reported for an analyte that meets batch acceptance criteria even though another analyte on the same batch does not meet batch acceptance criteria. Batch acceptance criteria are outlined below. It is noted that even though all acceptance criteria are met within a batch, the confirmation analyst must rely on their training and experience to determine if any anomalies exist that do not fall into the categories discussed below. In these
instances the analyst should discuss the anomaly/anomalies with the Toxicology Manager or Supervisor in order to determine if all or part of a batch should be repeated to ensure that the reported results are accurate. If the decision is made to repeat all or part of a batch, the discussion should be documented in the case file.

4.0.4.1 Linearity

Each batch shall be calibrated on calibration standards specified in chapters 4.1 and 4.2. The calibration standards shall be extracted on the same day as the casework samples. The quantitative result of each calibration standard must be at or within ±20% of the target value. One level may be excluded from the calibration. If the level excluded is the lowest calibrator, then any casework with a concentration below that of the next lowest calibrator will be reanalyzed. If the level excluded is the highest calibrator, then any casework with a concentration above that of the next highest calibrator will be reanalyzed. The analyst will note when a calibration standard has been dropped. MassHunter software indicates a dropped calibration standard by an outlined point (rather than a solid point) on the curve graphic. No other notation is needed when using MassHunter software. An r^2 value of greater than or equal to 0.995 must be achieved.

4.0.4.2 Controls

All methods shall include control samples, if commercially available. Controls shall not be derived from the same lot as the calibration standards. Blood methods may use urine control material diluted with negative blood. A control shall be run prior to casework samples, at the end of each batch, and after every 10 samples throughout the batch. The controls will be of varying concentrations within the range of the curve. At a minimum, positive controls will be run at concentrations equal to the lowest calibration standard and equal to the highest calibration standard on each batch. Positive controls shall be no greater than ±20% of the target value.

Each control shall be evaluated independently and the failure of a control for a single analyte does not invalidate the control of other analytes within that assay. If a positive control fails, the case samples bracketed by the two valid controls immediately before and after the failed control shall be repeated. Moreover, in order to report a positive result, the positive result shall be at a concentration that is equal to or within the range of positive controls that meet QC requirements within the batch. If more than one positive control fails for a single analyte, all samples must be repeated. In the event of control failure(s), case samples with no indication that the analyte is present (i.e., no quantitation ion peak) do not need to be repeated and may be reported as “none detected”.

If the glucuronide control from a codeine/morphine urine, benzodiazepine urine, or THCA urine batch fails, all samples must be repeated.
4.0.4.3 Negative Control

A negative control consisting of a drug free matrix is spiked with internal standard and run after the highest calibration standard. The negative control shall produce a negative result. A result is defined as negative when the abundance/area counts of the target ion is less than 10% relative to that of the target ion of the lowest calibration standard. If the negative control has abundance/area counts equal to or greater than 10% of the lowest calibration standard, but does not meet retention time criteria listed in section 4.0.5.1, the result will be deemed negative.

4.0.5 Qualitative Identification of Analytes

4.0.5.1 Retention time

The retention time of analytes should be no greater than ±2 % of the retention time as established by calibration samples. If an analyte in a casework sample falls outside of this range due to overloading, then the sample will be repeated after the sample has been diluted and re-extracted. Relative Retention Time (retention time of the analyte target ion divided by the retention time of the internal standard target ion) should remain consistent throughout each batch.

4.0.5.2 Qualifying ion correlation

For electron impact (EI) analysis, each analyte must have a primary ion and two qualifying ions. Internal Standards must have a primary ion and one qualifying ion.

For chemical ionization (CI) analysis each analyte must have a primary ion and at least one qualifying ion. Internal Standards shall have a primary ion and one qualifying ion.

For MS/MS analysis, each analyte must have a primary ion and at least one qualifying ion. Internal Standards must have a primary ion (a qualifying ion is not required).

4.0.5.3 Ion ratios

Qualifying ion ratios generally should be no greater than ±20 % (for EI and MS/MS methods) or ±30 % (for CI methods) of the ion ratios of the corresponding control or calibrators. However, it is recognized that some ion ratios are concentration dependent and that comparison to a calibrator or control of similar concentration may be necessary, rather than comparison with a value calculated from a single known sample or an average calculated from all calibration samples over the entire quantitative range.

4.0.6 Manual Integration

It is recognized that peak integration which is performed automatically by the instrument software may not be satisfactory due to interferences that are a routine part of biological sample analyses. In such cases, manual integration may be used.
When manual integration is used in ChemStation software, the notation "**MANUAL INTEGRATION WAS USED**" will be displayed next to the result on the data printout. All manually integrated peaks will be noted by the analyst on the data printout when using ChemStation.

MassHunter software will place an asterisk next to peaks that have been manually integrated and display the peaks in a different color. No further notation is needed by the analyst when using MassHunter.

Peaks integrated manually will be reviewed during the technical review. A completed technical review will indicate agreement with the execution of the manual integration.

4.0.7 Re-injections

There may be situations in which samples may need to be re-injected (e.g., poor chromatography, interference, failed ion ratios). Samples may be re-injected the following day if no changes to the system have been made (e.g., injector maintenance, column trim, autotune, etc.). Document the re-injection on the chromatogram with the reason for the re-injection. The sample name of the re-injected vial is the same as the original injection data file except that it is appended with “R” for “re-injection.”

4.0.7.1 Re-injections Following Specimens with High Concentrations

Agilent ChemStation software utilizes Intelligent Sequencing which automatically injects a blank after a specimen with a concentration above the level specified in the method. There are circumstances when this feature does not function appropriately (e.g., high concentration of analyte overloads the column and no quantitative result is calculated). In such circumstances, casework and Department samples analyzed directly after those with concentrations exceeding the carryover check level must be re-injected to confirm positive results, if the result is being reported.

When analyzing samples on the LC/MS/MS with MassHunter software, casework and Department samples analyzed after those with concentrations exceeding the highest standard must be re-injected to confirm positive results, if the result is being reported.

4.0.8 Screen Records Review

The drug screen results are included on the first confirm analyst’s declaration. Therefore, the first analyst to complete a confirmation analysis on an item within the unit record, will review all drug screen examination records for each case they analyze and note “reviewed” with their initials and date on the screen worksheet. The review of the drug screen examination records includes verifying that a Technical and Administrative Review was performed on the drug screen QC packet. If the first confirm analyst completed the drug screen the review is considered complete and no additional notation is needed on the worksheet.
4.0.9 Reporting

A report that is issued represents a summary of the analytical findings, identifies the substance(s) tested, and lists the amount (usually ng/mL) or “none detected” if no substance in a drug class is detected at or above the cut-off (see Chapter 4.2.01 for special reporting criteria for methamphetamine in urine). Quantitative results for fentanyl are truncated to two decimal places. Quantitative results for all other analytes are truncated to one decimal place. Measurement uncertainty is reported for all positive quantitative results. Standard rules of rounding are used to calculate measurement uncertainty results.

Quantitative results for drug analytes must not be reported below the cutoff concentration. For analytes with linear calibration models results may be reported at a concentration of up to 20% greater than the highest standard if the method has been validated to be linear at that level. For analytes with non-linear calibration models (e.g., quadratic), results may be reported at concentrations up to and including the highest calibration standard.

If the results from a sample exceed the highest calibrated level by more than twenty percent, then the analyst will follow the guidelines listed below:

- If a dilution was performed, divide the result by the dilution factor. If that result is within the calibration range, report the result listed on the chromatogram.
- If the casework sample is urine, the casework sample can be reported as greater than the highest calibration standard times the dilution factor. (Example: The highest calibration standard is 1000 ng/mL. The casework sample result is 6514.3 ng/mL and the dilution factor is 5. The result may be reported as greater than 5000.0 ng/mL).
- If any blood sample has sufficient quantities for multiple analyses, the sample will be repeated after the sample has been diluted and re-extracted.
- If any blood sample has insufficient quantity to perform a dilution, then the results will be reported out as greater than the highest calibration standard.

Laboratory management has the discretion to allow changes in reporting guidelines on a case by case basis. The approval for the change to the reporting guideline must be documented in the case record.

4.0.10 Measurement Uncertainty

Measurement uncertainty documents are located in Qualtrax at Documents\LVMPD\Forensic Lab\Toxicology\Measurement Uncertainty. The measurement uncertainty will be reviewed and/or recalculated every two years and will be recalculated if there are procedural changes to the method that affect the quantitative measurement. The measurement uncertainty may be reviewed and/or recalculated at any time at the discretion of the Toxicology Manager.
4.1.01 Title: CONFIRMATION - AMPHETAMINES AND STIMULANTS IN BLOOD

Purpose and Scope: This procedure is used to quantitatively determine amphetamine, methylenedioxyamphetamine, methamphetamine, methylenedioxymethamphetamine, phentermine, and methylphenidate in whole blood.

Principle: The deuterium labeled analog of each analyte is added to each sample as an internal standard. The analytes and internal standards are extracted from whole blood using a liquid-liquid extraction technique and analyzed by LC/MSMS.

Materials:
- 16 x 100 mm glass screw-top tubes and caps*
- Disposable glass Pasteur pipettes
- LC/MS/MS autosampler vials with inserts and caps
*Other size tubes may be used as necessary.

Reagents:
Chemicals:
- Sodium phosphate, tribasic, ACS grade or higher
- Distilled water
- 1-Chlorobutane, LC grade or higher
- Hydrochloric acid, ACS grade or higher
- 2-Propanol, LC grade or higher
- Formic acid, LCMS grade
- Water, LCMS grade
- Methanol, LC grade or higher
- Acetonitrile, LCMS grade

Reagent solutions (see Chapter 4.4 for preparation, QC, and storage instructions):
- 0.2 M sodium phosphate, tribasic
- 0.2% (v/v) Hydrochloric acid in 2-propanol
- 0.1% (v/v) Formic acid in water
- 0.1% (v/v) Formic acid in acetonitrile

Drug solutions (see Chapter 4.3 for preparation, QC, and storage instructions):
- Calibration standard working solution level 1 – 1 μg/mL AMP, MDA, METH, MDMA, PHEN, and MPH
- Calibration standard working solution level 2 – 10 μg/mL AMP, MDA, METH, MDMA, PHEN, and MPH
- Control working solution level 1 – 1 μg/mL AMP, MDA, METH, MDMA, PHEN, and MPH
Control working solution level 2 – 10 µg/mL AMP, MDA, METH, MDMA, PHEN, and MPH

Internal standard working solution – 1 µg/mL AMP-D$_{11}$, MDA-D$_{5}$, METH-D$_{11}$, MDMA-D$_{5}$, PHEN-D$_{5}$, and MPH-D$_{9}$

Calibrators and Controls:
Calibrators are prepared in 1.0 mL aliquots at each of the concentrations listed below in labeled 16 x 100 mm glass screw-top tubes using negative whole blood and the specified calibration standard working solutions.

Controls are prepared in the same concentrations as calibrators. A control is run after the negative control, after every 10 samples, and at the end of the batch.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Final Concentration of AMP/MDA/METH/MDMA/PHEN/MPH (ng/mL)</th>
<th>Volume of Working Solution Level 1 (1 µg/mL)</th>
<th>Volume of Whole Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>20 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>50 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>75 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>100 µL</td>
<td>1000 µL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Final Concentration of AMP/MDA/METH/MDMA/PHEN/MPH (ng/mL)</th>
<th>Volume of Working Solution Level 2 (10 µg/mL)</th>
<th>Volume of Whole Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>250</td>
<td>25 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
<td>50 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>7</td>
<td>750</td>
<td>75 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>100 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>1000 µL</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators and controls as described above. Pipet 1.0 mL of each casework blood specimen into a labeled 16 x 100 mm glass screw-top tube.
2. Add 100 µL of internal standard working solution to each tube.
3. Add 2 mL of 0.2 M sodium phosphate, tribasic and vortex.
4. Add 6 mL of 1-chlorobutane to each tube and vortex.
5. Cap and rotate tubes for at least 20 minutes.
6. Centrifuge at ~3000 rpm for at least 30 minutes.
7. Transfer the upper organic layer to appropriately labeled tubes.
8. Add 100 µL of 0.2% (v/v) HCl in 2-propanol to each tube and vortex.
9. Evaporate samples under nitrogen to dryness at ~40˚C. **Do not over dry.**
Reconstitution:
10. Add 1.5 mL of 0.1% (v/v) formic acid in water and vortex.
11. Transfer the contents of each tube into an autosampler vial. Cap and transfer to the autosampler tray for LC/MSMS analysis.

LC/MS/MS Analysis:

<table>
<thead>
<tr>
<th>LVMPD Instrument</th>
<th>Tox #1 LCMSMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument Make/Model</td>
<td>Agilent 6420 Triple Quadrupole LC/MS</td>
</tr>
<tr>
<td>Software</td>
<td>Agilent MassHunter</td>
</tr>
<tr>
<td>Acquisition Method</td>
<td>AMPSTIM_B.m</td>
</tr>
<tr>
<td>Data Analysis Method</td>
<td>AMPSTIM_B.m</td>
</tr>
<tr>
<td>Reporting Method</td>
<td>AMPSTIM_B.m</td>
</tr>
</tbody>
</table>

LC Parameters:

<table>
<thead>
<tr>
<th>Multisampler Temperature</th>
<th>4.0 °C - Room Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection Volume</td>
<td>1 - 5 µL (e.g., 2 µL)</td>
</tr>
<tr>
<td>Column</td>
<td>Agilent InfinityLab Poroshell 120 EC-C18 (2.1 x 50 mm, 2.7 µm)</td>
</tr>
<tr>
<td>Column Temperature</td>
<td>50 °C</td>
</tr>
<tr>
<td>Needle Wash</td>
<td>10 s</td>
</tr>
<tr>
<td>Needle Wash Solution</td>
<td>75:25 Methanol:Water</td>
</tr>
<tr>
<td>Mobile Phase A</td>
<td>0.1% (v/v) Formic Acid in Water</td>
</tr>
<tr>
<td>Mobile Phase B</td>
<td>0.1% (v/v) Formic Acid in Acetonitrile</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>0.5 mL/min</td>
</tr>
<tr>
<td>Gradient:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (Minutes)</th>
<th>% Aqueous 0.1% formic acid in water</th>
<th>% Organic 0.1% formic acid in acetonitrile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>6.5</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>8.5 (Stop)</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>Post Time</td>
<td>2.5 minutes</td>
<td></td>
</tr>
</tbody>
</table>

Note: Slight variations in gradient may exist due to instrument capabilities, column properties, etc.
MSD Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionization</td>
<td>ESI</td>
</tr>
<tr>
<td>Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Gas Temperature</td>
<td>350 °C</td>
</tr>
<tr>
<td>Gas Flow</td>
<td>13.0 L/min</td>
</tr>
<tr>
<td>Nebulizer Pressure</td>
<td>30 psi</td>
</tr>
<tr>
<td>Capillary</td>
<td>1500 V</td>
</tr>
</tbody>
</table>

Analyte	Quantitation Transition	Qualifier Transition
AMP-D11 | 147.2 → 98.1 | n/a |
AMP | 136.1 → 91.1 | 136.1 → 119.0 |
MDA-D5 | 185.1 → 168.1 | n/a |
MDA | 180.1 → 163.0 | 180.1 → 105.1 |
METH-D11 | 161.2 → 97.1 | n/a |
METH | 150.1 → 91.1 | 150.1 → 119.0 |
MDMA-D5 | 199.1 → 165.0 | n/a |
MDMA | 194.1 → 163.0 | 194.1 → 105.1 |
PHEN-D5 | 155.2 → 96.1 | n/a |
PHEN | 150.1 → 91.1 | 150.1 → 133.1 |
MPH-D9 | 243.2 → 93.2 | n/a |
MPH | 234.1 → 84.2 | 234.1 → 56.2 |

Calibration Models:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Model Type</th>
<th>Origin</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphetamine</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>MDA</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>MDMA</td>
<td>Linear</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Phentermine</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Methylphenidate</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
</tbody>
</table>

Note: The LVMPD Forensic Laboratory does not distinguish enantiomers of AMP, MDA, METH, MDMA, or MPH when reporting drug confirmation results.
4.1.02 Title: CONFIRMATION – COCAINE / COCAETHYLENE / BENZOYLECGONINE IN BLOOD

Purpose and Scope: This procedure is used to quantitatively determine cocaine, cocaethylene, and benzoylecgonine in whole blood.

Principle: The deuterium labeled analog of each analyte is added to each sample as an internal standard. Protein precipitation with acetonitrile is used to prepare the whole blood specimens for analysis. An LC/MSMS is used for the identification and quantitation of analytes.

Materials:
- 16 x 125 mm glass tubes*
- 16 x 100 mm glass tubes*
- LC/MSMS autosampler vials with caps
*Other size tubes may be used as necessary.

Reagents:
Chemicals:
- Acetonitrile, HPLC grade or better
- Hydrochloric acid
- Methanol
- 0.1% Formic Acid in acetonitrile, LCMS grade
- 0.1% Formic acid in water, LCMS grade

Reagent solutions (unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):
- 1% Hydrochloric acid in methanol
 - Prepare fresh for one-time use
 - QC: Concurrently with use
- 5% (v/v) Acetonitrile with 0.1% formic acid in water with 0.1% formic acid
 - Prepare fresh for one-time use
 - QC: Concurrently with use

Drug solutions (see Chapter 4.3 for preparation, QC, and storage instructions):
- Calibration standard working solution level 1 – 1 μg/mL COC/CE and 5 μg/mL BZE
- Calibration standard working solution level 2 – 10 μg/mL COC/CE and 50 μg/mL BZE
- Control working solution level 1 – 1 μg/mL COC/CE and 5 μg/mL BZE
- Control working solution level 2 – 10 μg/mL COC/CE and 50 μg/mL BZE
- Internal standard working solution – 2 μg/mL COC-D$_3$/CE-D$_3$ and 10 μg/mL BZE-D$_3$
Calibrators and Controls:
Calibrators are prepared in 1.0 mL aliquots at each of the concentrations listed below in labeled 16 x 125 mm glass tubes using negative whole blood and the specified calibration standard working solutions.

Controls are prepared in the same concentrations as calibrators. A control is run after the negative control, after every 10 samples, and at the end of the batch.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Final Concentration of COC, CE / BZE (ng/mL)</th>
<th>Volume of COC, CE / BZE Working Solution Level 1 (1 / 5 µg/mL)</th>
<th>Volume of Whole Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 / 50</td>
<td>10 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>2</td>
<td>50 / 250</td>
<td>50 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>3</td>
<td>100 / 500</td>
<td>100 µL</td>
<td>1000 µL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Final Concentration of COC, CE / BZE (ng/mL)</th>
<th>Volume of COC, CE / BZE Working Solution Level 2 (10 / 50 µg/mL)</th>
<th>Volume of Whole Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>250 / 1250</td>
<td>25 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>5</td>
<td>500 / 2500</td>
<td>50 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>6</td>
<td>1000 / 5000</td>
<td>100 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>1000 µL</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators and controls as described above.
2. Pipet 1.0 mL of each casework blood specimen into a labeled 16 x 125 mm glass tube.
3. Add 50 µL of internal standard working solution to each tube and vortex.

Protein Precipitation:
4. Add 2 mL of cold acetonitrile while vortexing.
5. Centrifuge at ~3000 rpm for at least 10 minutes.
6. Transfer supernatant to appropriately labeled 16 x 100 mm glass culture tubes.
7. Add 100 µL of 1% hydrochloric acid in methanol and vortex.
8. Transfer tubes to an evaporator bath and evaporate to dryness at ~50°C under a gentle stream of nitrogen.

Reconstitution:
9. Add 1 mL of 5% (v/v) acetonitrile with 0.1% formic acid in water with 0.1% formic acid and vortex.
10. Transfer the contents of each tube into an autosampler vial. Cap and transfer to the autosampler tray for LC/MS/MS analysis.
LC/MS/MS Analysis:
LVMPD Instrument: Tox #1 LC MSMS
Instrument Make/Model: Agilent 1260 Infinity LC and 6420 Triple Quadrupole LC/MS
Software: Agilent MassHunter
Acquisition Method: COC_B.m
Data Analysis Method: COC_B.m
Reporting Method: COC_B.m

LC Parameters:
Multisampler Temperature: 4.0 °C - Room Temperature
Injection Volume: 1 - 5 µL (e.g., 2 µL)
Column: Agilent InfinityLab Poroshell 120 EC-C18 (2.1 x 50 mm, 2.7 µm)
Column Temperature: 30 °C
Needle Wash: 10 s
Needle Wash Solution: 75:25 Methanol:Water
Mobile Phase A: 0.1% (v/v) Formic Acid in Water
Mobile Phase B: 0.1% (v/v) Formic Acid in Acetonitrile
Flow Rate: 0.5 mL/min

<table>
<thead>
<tr>
<th>Time (Minutes)</th>
<th>% Aqueous</th>
<th>% Organic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1% formic acid in water</td>
<td>0.1% formic acid in acetonitrile</td>
</tr>
<tr>
<td>Initial</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>5.5</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>7.5 (Stop)</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>Post Time</td>
<td>3 minutes</td>
<td></td>
</tr>
</tbody>
</table>

Note: Slight variations in gradient may exist due to instrument capabilities, column properties, etc.

MSD Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionization</td>
<td>ESI</td>
</tr>
<tr>
<td>Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Gas Temperature</td>
<td>350 °C</td>
</tr>
<tr>
<td>Gas Flow</td>
<td>12 L/min</td>
</tr>
<tr>
<td>Nebulizer Pressure</td>
<td>15 psi</td>
</tr>
<tr>
<td>Capillary</td>
<td>1500 V</td>
</tr>
<tr>
<td>Analyte</td>
<td>Quantitation Transition</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>BZE-D3</td>
<td>293.2 → 171.1</td>
</tr>
<tr>
<td>BZE</td>
<td>290.1 → 168.0</td>
</tr>
<tr>
<td>COC-D3</td>
<td>307.2 → 185.1</td>
</tr>
<tr>
<td>COC</td>
<td>304.2 → 182.1</td>
</tr>
<tr>
<td>CE-D3</td>
<td>321.1 → 199.1</td>
</tr>
<tr>
<td>CE</td>
<td>318.2 → 196.1</td>
</tr>
</tbody>
</table>

Calibration Models:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Model Type</th>
<th>Origin</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzylecgonine</td>
<td>Linear</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Cocaine</td>
<td>Linear</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Cocaethylene</td>
<td>Linear</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
</tbody>
</table>
4.1.03 Title: CONFIRMATION - CANNABINOIDS IN BLOOD

Purpose and Scope: This procedure is used to quantitatively determine the psychoactive component of marijuana (Δ9-tetrahydrocannabinol), an active metabolite 11-hydroxy-Δ9-tetrahydrocannabinol, and the major inactive metabolite tetrahydrocannabinol-carboxylic acid in whole blood.

Principle: The deuterium labeled analog of each analyte is added to each sample as an internal standard. The compounds and internal standards are extracted from whole blood using a liquid-liquid extraction technique and analyzed by LC/MS/MS.

Materials:
- 16 x 100 mm silanized glass screw-top tubes and caps*
- 16 x 100 mm silanized glass culture tubes*
- Disposable glass Pasteur pipettes
- LC-MS/MS autosampler vials with inserts and caps
 *other size tubes may be used as necessary

Reagents:

Chemicals:
- Water, LC-MS grade
- Acetic acid, glacial
- Hexane
- Ethyl acetate
- Acetonitrile, LC-MS grade

Reagent Solutions
Prepare fresh daily:
- 10% Acetic acid solution – 9:1 water:glacial acetic acid
 QC: Concurrently with batch. All drug confirmation Batch Acceptance Criteria must be met for passing QC.
- Organic extraction solvent – 9:1 hexane:ethyl acetate
 QC: Concurrently with batch. All drug confirmation Batch Acceptance Criteria must be met for passing QC.

Drug solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.3.1 for QC instructions):
- Calibration standard working solution level 1 – 0.1 µg/mL THC, 11-OH-THC / 0.5 µg/mL THCA in methanol.
- Calibration standard working solution level 2 – 1 µg/mL THC, 11-OH-THC / 5 µg/mL THCA in methanol.
Control working solution level 1 – 0.1 µg/mL THC, 11-OH-THC / 0.5 µg/mL THCA in methanol.
Control working solution level 2 – 1 µg/mL THC, 11-OH-THC / 5 µg/mL THCA in methanol.
Internal standard working solution – 0.1 µg/mL THC-D$_3$, 11-OH-THC-D$_3$ / 0.5 µg/mL THCA-D$_3$ in methanol.

Calibrators and Controls:
Calibrators are prepared in 1.0 mL aliquots at each of the concentrations listed below in labeled 16 x 100 mm silanized glass screw-top tubes using negative whole blood and the specified calibration standard working solution.

Controls are prepared in the same concentrations as calibrators. A control is run after the negative control, after every 10 samples, and at the end of the batch.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Final Cannabinoid Concentration (ng/mL) THC, 11-OH-THC / THCA</th>
<th>Volume of Cannabinoid Calibration Standard Working Solution Level 1 (0.1 µg/mL THC, 11-OH-THC / 0.5 µg/mL THCA)</th>
<th>Volume of Whole Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 / 5</td>
<td>10 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>2</td>
<td>5 / 25</td>
<td>50 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>3</td>
<td>10 / 50</td>
<td>100 µL</td>
<td>1000 µL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Final Cannabinoid Concentration (ng/mL) THC, 11-OH-THC / THCA</th>
<th>Volume of Cannabinoid Calibration Standard Working Solution Level 2 (1 µg/mL THC, 11-OH-THC / 5 µg/mL THCA)</th>
<th>Volume of Whole Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>25 / 125</td>
<td>25 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>5</td>
<td>50 / 250</td>
<td>50 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>6</td>
<td>100 / 500</td>
<td>100 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>1000 µL</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators and controls as described above.
2. Pipet 1.0 mL of each casework blood specimen into a labeled 16 x 100 mm silanized glass screw-top tube.
3. Add 100 µL of internal standard working solution to each tube.
4. Add 2 mL of water to each tube and vortex.
5. Add 800 µL of 10% acetic acid and vortex.
6. Add 6 mL of 9:1 hexane:ethyl acetate solution, cap, vortex, and rock/rotate tubes for 20 minutes.
7. Centrifuge at ~3000 rpm for at least 30 minutes.
8. Transfer the upper organic layer to appropriately labeled silanized tubes.
9. Transfer the tubes to an evaporator bath and evaporate to dryness at 30 °C under a gentle stream of nitrogen.

Reconstitution:

10. Add 50 μL of acetonitrile, LC-MS grade to each tube and vortex.
11. Add 50 μL of water, LC-MS grade to each tube and vortex.
12. Transfer the contents of each tube into an autosampler vial equipped with an insert.
 Cap and transfer to the autosampler tray for LC/MS/MS analysis.

LC/MS/MS Analysis:

- **LVMPD Instrument:** Tox #1 LC/MS/MS
- **Instrument Make/Model:** Agilent 6420 LC/MS/MS
- **Software:** Agilent MassHunter
- **Acquisition Method:** Cannabinoids_B.m
- **Data Analysis Method:** Cannabinoids_B.m
- **Reporting Method:** Cannabinoids_B.m

LC Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multisampler Temperature</td>
<td>4.0 °C - Room Temperature</td>
</tr>
<tr>
<td>Injection Volume</td>
<td>2.0 - 30.0 μL (e.g., 10.0 μL)</td>
</tr>
<tr>
<td>Column</td>
<td>Agilent InfinityLab Poroshell 120 EC-C18 (2.1 x 50 mm, 2.7 μm)</td>
</tr>
<tr>
<td>Column Temperature</td>
<td>40 °C</td>
</tr>
<tr>
<td>Needle Wash</td>
<td>10 s</td>
</tr>
<tr>
<td>Mobile Phase A</td>
<td>0.1% Formic Acid in Water</td>
</tr>
<tr>
<td>Mobile Phase B</td>
<td>0.1% Formic Acid in Acetonitrile</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>0.5 mL/min</td>
</tr>
<tr>
<td>Gradient:</td>
<td>Time (Minutes)</td>
</tr>
<tr>
<td>Initial</td>
<td>60</td>
</tr>
<tr>
<td>1.0</td>
<td>60</td>
</tr>
<tr>
<td>7.0</td>
<td>5</td>
</tr>
<tr>
<td>10.0</td>
<td>5</td>
</tr>
<tr>
<td>10.5 (Stop)</td>
<td>60</td>
</tr>
<tr>
<td>Post Time</td>
<td>3.0 minutes</td>
</tr>
</tbody>
</table>

Note: Slight variations in gradient may exist due to instrument capabilities, column properties, etc.
MSD Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionization</td>
<td>ESI</td>
</tr>
<tr>
<td>Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Gas Temperature</td>
<td>320 °C</td>
</tr>
<tr>
<td>Gas Flow</td>
<td>11 L/min</td>
</tr>
<tr>
<td>Nebulizer Pressure</td>
<td>30 psi</td>
</tr>
<tr>
<td>Capillary</td>
<td>5,500 V</td>
</tr>
</tbody>
</table>

Analyte

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Quantitation Transition</th>
<th>Qualifier Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-OH-THC-D₃</td>
<td>334.2 → 196.1</td>
<td>n/a</td>
</tr>
<tr>
<td>11-OH-THC</td>
<td>331.2 → 193.1</td>
<td>331.2 → 201.0</td>
</tr>
<tr>
<td>THCA-D₃</td>
<td>348.2 → 302.1</td>
<td>n/a</td>
</tr>
<tr>
<td>THCA</td>
<td>345.2 → 299.1</td>
<td>345.2 → 193.1</td>
</tr>
<tr>
<td>THC-D₃</td>
<td>318.2 → 196.1</td>
<td>n/a</td>
</tr>
<tr>
<td>THC</td>
<td>315.2 → 193.0</td>
<td>315.2 → 123.0</td>
</tr>
</tbody>
</table>

Calibration Models:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Model Type</th>
<th>Origin</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-OH-THC</td>
<td>Linear</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>THCA</td>
<td>Linear</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>THC</td>
<td>Linear</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
</tbody>
</table>
4.1.04 Title: CONFIRMATION - NARCOTIC ANALGESICS IN BLOOD

Purpose and Scope: This procedure is used to quantitatively determine the concentration of 6-Acetylmorphine, Codeine, Fentanyl, Hydrocodone, Hydromorphone, Methadone, Morphine, O-Desmethyltramadol, Oxycodone, Oxymorphone, and Tramadol in whole blood.

Principle: The deuterium labeled analog of each analyte is added to each sample as an internal standard. The analytes and internal standards are extracted from whole blood and analyzed by LC/MSMS.

Materials:
- SPE columns (Agilent Bond Elut Plexa PCX #12108206, or equivalent)
- 16 x 100 mm silanized glass culture tubes*
- Autosampler vials, caps and silanized/deactivated inserts.
 *other size tubes may be used as necessary

Reagents:

Chemicals:
- Distilled water
- Water, LC grade or higher
- Methanol, LC grade or higher
- Ethyl Acetate, HPLC grade or higher
- Isopropanol, HPLC grade or higher
- Ammonium hydroxide, ACS grade or higher
- 2% Formic Acid, LC grade or higher
- Formic Acid (LC grade)
- Ammonium Formate (ACS grade)

Reagent Solutions: (Unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):
- 5 M Ammonium Formate
- Phosphate buffer, 100 mM, pH 6.0
- Water with 0.01% formic acid and 5 mM ammonium formate
- Methanol with 0.1% formic acid and 5 mM ammonium formate
- (80:10:10) Acetonitrile:Isopropanol:Methanol

Prepare Fresh Daily: QC Concurrently with batch. All drug confirmation Batch Acceptance Criteria must be met for passing QC.
- 2% Formic Acid Solution—98:2 water:formic acid (May use commercially prepared reagent in lieu of)
- 2% Formic Acid solution in Methanol—70:30 methanol:2% formic acid
Drug Solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.4 for QC instructions):

- Reconstitution Solution – water:methanol (90:10)

- Calibration standard working solution Level 1– 0.02 µg/mL fentanyl; 0.2 µg/mL oxymorphone, hydromorphone, 6-acetylmorphine; 1.0 µg/mL morphine, codeine, oxycodone, hydrocodone, methadone, tramadol, o-desmethyltramadol in methanol.
- Calibration standard working solution Level 2– 0.2 µg/mL fentanyl; 2 µg/mL oxymorphone, hydromorphone, 6-acetylmorphine; 10 µg/mL morphine, codeine, oxycodone, hydrocodone, methadone, tramadol, o-desmethyltramadol in methanol.
- Control working solution Level 1– 0.02 µg/mL fentanyl; 0.2 µg/mL oxymorphone, hydromorphone, 6-acetylmorphine; 1.0 µg/mL morphine, codeine, oxycodone, hydrocodone, methadone, tramadol, o-desmethyltramadol in methanol.
- Control working solution Level 2– 0.2 µg/mL fentanyl; 2 µg/mL oxymorphone, hydromorphone, 6-acetylmorphine; 10 µg/mL morphine, codeine, oxycodone, hydrocodone, methadone, tramadol, o-desmethyltramadol in methanol.
- Internal standard working solution – 0.02 µg/mL fentanyl-D₅; 0.2 µg/mL oxymorphone-D₃, hydromorphone-D₆, 6-acetylmorphine-D₆; 1 µg/mL morphine-D₆, codeine-D₆, oxycodone-D₆, hydrocodone-D₆, methadone-D₃, Tramadol-¹³C-D₃, o-desmethyltramadol-D₆ in methanol.

Calibrators and Controls:

Calibrators are prepared in 1 mL aliquots at each of the concentrations listed below in labeled 16 x 100 mm silanized glass culture tubes using negative whole blood and the specified calibration standard working solution.

Controls are prepared in the same concentrations as calibrators. A control is run prior to case samples, after every 10 samples throughout the batch, and at the end of the run.
Preparation:

1. Prepare calibrators and controls as described above. Pipet 1 mL of each casework blood specimen into a labeled 16 x 100 mm silanized glass culture tube.
2. Add 50 μL of internal standard working solution to each tube.
3. Add 4 mL of 100 mM phosphate buffer 6.0 and vortex. Centrifuge for at least 10 minutes at ~3000 rpm.
4. Place SPE extraction columns into an extraction manifold.
5. Condition Bond Elut Plexa PCX cartridge with 0.5 mL methanol, soak, let drip. Once dripping stops, apply low pressure to force out remaining methanol.
6. Load samples and run through SPE columns.
7. Wash SPE columns with:
 a. 2 mL of 2% formic acid
 b. an additional 2 mL of 2% formic acid
 c. 3 mL of 70 MeOH:30 of 2% formic acid
8. Dry SPE columns for 5-10 minutes under high pressure.
9. Place labeled 16×100 mm silanized glass culture tubes in manifold under each SPE column and elute with:
 a. 0.75 mL of eluting solution (ethyl acetate:isopropanol:ammonium hydroxide (80:20:5))
 b. an additional 0.75 mL of eluting solution
c. Allow eluate to soak the sorbent bed with each aliquot. Let the eluate drip into the collection vials under gravity. When the dripping stops, apply low pressure to extract eluate from the smallest pores.

Reconstitution:
10. Evaporate to dryness under a stream of nitrogen at a maximum of 45 °C.
11. Add 200 µL of reconstitution solution (water:methanol (90:10)) to each vial; vortex, and transfer into autosampler vials with silanized vial inserts.
 a. Samples may be centrifuged prior to transfer into autosampler vials, if desired.

LC/MS/MS Analysis:
LVMPD Instrument: TOX #2 LC/MSMS
Instrument Make/Model: Agilent 1260 LC, 6420 MS/MS
Software: Agilent MassHunter
Acquisition Method: Narcotic Analgesics_B.m
Data Analysis Method: Narcotic Analgesics_B_Quant.m
Reporting Method: Narcotic_Analgesics_B_Summary and Curve.xltx
Narcotic_Analgesics_Samples.template.xml

LC Parameters:
Multisampler Temperature: 4.0 °C - Room Temperature
Injection Volume: 2.0 - 30.0 µL (e.g., 10.0 µL)
Column: Agilent Poroshell 120 Phenyl Hexyl (2.1 x 50 mm, 2.7 µm)
Column Temperature: 45 °C
Needle Wash: 25 s
Needle Wash Solution: 80:10:10 – Acetonitrile:Isopropanol:Methanol
Mobile Phase A: Water with 0.01% Formic Acid and 5 mM Ammonium Formate
Mobile Phase B: Methanol with 0.1 % Formic Acid and 5 mM Ammonium Formate
Flow Rate 0.45 mL/min

Gradient

<table>
<thead>
<tr>
<th>Time (Minutes)</th>
<th>% Aqueous</th>
<th>% Organic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water with 0.01% formic acid + 5 mM Ammonium Formate</td>
<td>Methanol with 0.1% formic acid + 5 mM Ammonium Formate</td>
</tr>
<tr>
<td>Initial</td>
<td>93</td>
<td>7</td>
</tr>
<tr>
<td>1.0</td>
<td>93</td>
<td>7</td>
</tr>
<tr>
<td>2.0</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>8.0 (Stop)</td>
<td>5</td>
<td>95</td>
</tr>
</tbody>
</table>

Post Time 3.0 minutes

Note: Slight variations in gradient may exist due to instrument capabilities, column properties, etc.
MSD Parameters

<table>
<thead>
<tr>
<th>Time Segments #2 & #3 Parameter</th>
<th>Value</th>
<th>Time Segment #4 Parameter</th>
<th>Value</th>
<th>Time Segment #5 Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionization</td>
<td>ESI</td>
<td>Ionization</td>
<td>ESI</td>
<td>Ionization</td>
<td>ESI</td>
</tr>
<tr>
<td>Polarity</td>
<td>Positive</td>
<td>Polarity</td>
<td>Positive</td>
<td>Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Gas Temperature</td>
<td>290 °C</td>
<td>Gas Temperature</td>
<td>290 °C</td>
<td>Gas Temperature</td>
<td>290 °C</td>
</tr>
<tr>
<td>Gas Flow</td>
<td>11 L/min</td>
<td>Gas Flow</td>
<td>9 L/min</td>
<td>Gas Flow</td>
<td>7 L/min</td>
</tr>
<tr>
<td>Nebulizer Pressure</td>
<td>25 psi</td>
<td>Nebulizer Pressure</td>
<td>25 psi</td>
<td>Nebulizer Pressure</td>
<td>25 psi</td>
</tr>
<tr>
<td>Capillary</td>
<td>1,300 V</td>
<td>Capillary</td>
<td>1,300 V</td>
<td>Capillary</td>
<td>2,200 V</td>
</tr>
</tbody>
</table>

Analyte

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Quantitation Transition</th>
<th>Qualifier Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine-D6</td>
<td>292.2 → 152.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Morphine</td>
<td>286.2 → 152.1</td>
<td>286.2 → 165.1</td>
</tr>
<tr>
<td>Oxymorphine-D3</td>
<td>305.2 → 230.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Oxymorphine</td>
<td>302.1 → 227.1</td>
<td>302.1 → 198.1</td>
</tr>
<tr>
<td>Hydromorphone-D6</td>
<td>292.2 → 185.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>286.2 → 185.1</td>
<td>286.2 → 157.1</td>
</tr>
<tr>
<td>Codeine-D6</td>
<td>306.2 → 152.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Codeine</td>
<td>300.2 → 152.1</td>
<td>300.2 → 165.1</td>
</tr>
<tr>
<td>O-Desmethyltramadol-D6</td>
<td>306.2 → 64.2</td>
<td>n/a</td>
</tr>
<tr>
<td>O-Desmethyltramadol</td>
<td>250.2 → 58.2</td>
<td>250.2 → 42.2</td>
</tr>
<tr>
<td>Oxycodone-D6</td>
<td>322.2 → 262.2</td>
<td>n/a</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>316.2 → 241.1</td>
<td>316.2 → 256.2</td>
</tr>
<tr>
<td>6-Acetylmorphine-D6</td>
<td>334.2 → 165.1</td>
<td>n/a</td>
</tr>
<tr>
<td>6-Acetylmorphine</td>
<td>328.2 → 165.1</td>
<td>328.2 → 211.1</td>
</tr>
<tr>
<td>Hydrocodone-D6</td>
<td>306.2 → 202.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>300.2 → 199.1</td>
<td>300.2 → 128.1</td>
</tr>
<tr>
<td>Tramadol-13C-D3</td>
<td>268.2 → 58.2</td>
<td>n/a</td>
</tr>
<tr>
<td>Tramadol</td>
<td>264.2 → 58.2</td>
<td>264.2 → 42.2</td>
</tr>
<tr>
<td>Fentanyl-D5</td>
<td>342.3 → 188.2</td>
<td>n/a</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>337.2 → 188.2</td>
<td>337.2 → 105.1</td>
</tr>
<tr>
<td>Methadone-D3</td>
<td>313.2 → 268.2</td>
<td>n/a</td>
</tr>
<tr>
<td>Methadone</td>
<td>310.2 → 265.2</td>
<td>310.2 → 105.1</td>
</tr>
<tr>
<td>Analyte</td>
<td>Model Type</td>
<td>Origin</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>Morphine</td>
<td>Linear</td>
<td>Ignore</td>
</tr>
<tr>
<td>Oxymorphone</td>
<td>Linear</td>
<td>Ignore</td>
</tr>
<tr>
<td>Hydromorphone</td>
<td>Linear</td>
<td>Ignore</td>
</tr>
<tr>
<td>Codeine</td>
<td>Quadratic</td>
<td>Ignore</td>
</tr>
<tr>
<td>O-Desmethyltramadol</td>
<td>Linear</td>
<td>Ignore</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>Linear</td>
<td>Ignore</td>
</tr>
<tr>
<td>6-Acetylmorphine</td>
<td>Linear</td>
<td>Ignore</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>Quadratic</td>
<td>Ignore</td>
</tr>
<tr>
<td>Tramadol</td>
<td>Linear</td>
<td>Ignore</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Linear</td>
<td>Ignore</td>
</tr>
<tr>
<td>Methadone</td>
<td>Linear</td>
<td>Ignore</td>
</tr>
</tbody>
</table>
4.1.05 Title: CONFIRMATION - PHENCYCLIDINE IN BLOOD

Purpose and Scope: This procedure is intended to quantitatively determine phencyclidine in whole blood.

Principle: The deuterium labeled analog of phencyclidine is added to each sample as an internal standard. Phencyclidine and the deuterated internal standard are extracted from blood. The extracted analytes are then quantitated by GC/MS operated in SIM mode.

Materials:
- Co-polymer SPE columns, (6 cc Cerex® Clin II 691-0506, or equivalent)
- 16 x 100 mm screw top glass culture tubes *
- 16 x 125 mm glass culture tubes*
- GC/MS autosampler vials, inserts, and TFE faced caps
 *other size tubes may be used as necessary

Reagents:
- Chemicals: Ethyl acetate, Methanol, Isopropanol, Ammonium hydroxide
- Reagent Solutions (Unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):
 - Acetic acid, 1.0 M
 - Phosphate buffer, 100 mM, pH 6.0
 - Eluting Solution - ethyl acetate/isopropanol/ammonium hydroxide (90/6/4). Add additional ammonium hydroxide as needed to achieve the required pH (pH = 12). Prepare fresh daily for one time use.
 - QC: Check pH with pH paper.
- Drug Solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.3.1 for QC instructions):
 - Internal standard working solution – 2.0 μg/mL Phencyclidine-D₅ in methanol.
 - Drug working solutions – 1.0 μg/mL Phencyclidine in methanol.
Calibrators and Controls:
Calibrators are prepared in 1 mL aliquots of each of the concentrations listed below in labeled 16 x 125 mm glass culture tubes using negative whole blood and the specified drug working solution.

Controls are prepared in the same concentrations as calibrators. A control is run prior to case samples, after every 10 samples throughout the batch, and at the end of the run.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Phencyclidine Final Concentration ng/mL</th>
<th>Phencyclidine Working Solution 1 µg/mL</th>
<th>Volume Whole Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10 µL</td>
<td>990 µL</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10 µL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>15 µL</td>
<td>985 µL</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>50 µL</td>
<td>950 µL</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>100 µL</td>
<td>900 µL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators and controls as described above.
2. Pipet 1 mL of each casework blood specimen into labeled 16 x 125 mm glass culture tubes.
3. Add 25 µL of Phencyclidine-D₅ internal standard (2 µg/mL) to each tube.
4. Add 4 mL of phosphate buffer, 100 mM, pH 6.0, to each tube while vortexing.
5. Centrifuge each tube for 10 min at ~3000 rpm.

Solid Phase Extraction:
6. Place the Cerex Clin II SPE columns into an extraction manifold.
7. Load samples and run through SPE columns.
8. Wash the SPE columns as follows:
 a. 3 mL distilled water
 b. 1 mL 1.0 M acetic acid
 c. 3 mL methanol
9. Dry SPE columns for at least 15 minutes at ≥ 20 psi.
10. Place collection tubes in manifold under each SPE column and elute with 3 mL of ethyl acetate/isopropanol/ammonium hydroxide (90/6/4).
11. Transfer the tubes to an evaporator bath and evaporate to dryness at 40 ºC under a gentle stream of nitrogen.

Reconstitution:
12. Reconstitute in 50 µL ethyl acetate and vortex.
13. Transfer contents of each tube to an autosampler vial/insert/cap and transfer to an autosampler tray for GC/MS analysis.
GC/MS Analysis:
Instrumentation: Agilent 7890A GC and 5975C Mass Spectrometer.
Column: HP-5MS, 30 m x 0.25 mm i.d., 0.25 μm film thickness (or equivalent, i.e. DB-5)
Acquisition method: PCP_B.M
Data analysis method: PCP_B.M
GC parameters:
 Injector temp: 250 ºC
 Thermal Aux 2 (Transfer Line): 300 ºC
 MS Source: 230 ºC
 MS Quad: 150 ºC
 Oven program: 150 ºC for 1 min, 25 ºC/min to 300 ºC, hold at 300 ºC for 3 min
 Injection mode and volume: splitless, 1-3 μL
 Pressure program: constant flow 1 mL/min

MS acquisition parameters (SIM) : Use Electron Impact Detector

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Quantitation ion</th>
<th>Qualifier ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phencyclidine-D₅</td>
<td>246</td>
<td>190</td>
</tr>
<tr>
<td>Phencyclidine</td>
<td>242</td>
<td>200, 243</td>
</tr>
</tbody>
</table>

Calibration Model:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Model Type</th>
<th>Origin</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phencyclidine</td>
<td>Linear</td>
<td>Ignore</td>
<td>None</td>
</tr>
</tbody>
</table>
Purpose and Scope: This procedure is intended to quantitatively determine 7-aminoclonazepam, zopiclone, zaleplon, oxazepam, nordiazepam, clonazepam, lorazepam, alprazolam, flunitrazepam, temazepam, and diazepam in whole blood.

Principle: The deuterium labeled analogs of the target analytes are added to each sample as an internal standard. The analytes and the internal standards are extracted from whole blood using liquid-liquid extraction and analyzed by LC/MS/MS.

Materials:
- 16 x 100 mm screw top glass culture tubes with screw caps*
- Autosampler vials, inserts, and caps
*other sizes tubes may be used as necessary

Reagents:
Chemicals:
- Sodium Borate
- Water, LC Grade or higher
- Ethyl acetate, LC Grade or higher
- Acetonitrile, LC Grade or higher

Reagent Solutions (Unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):
- Saturated sodium borate buffer
- Water:ACN reconstitution solution

Drug Solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.4 for QC instructions):
- Internal standard working solution – 0.5 μg/mL flunitrazepam-D7 / 1 μg/mL 7-aminoclonazepam-D4, zopiclone-D4, zolpidem-D6, zaleplon-D4, oxazepam-D5, nordiazepam-D5, clonazepam-D4, lorazepam-D4, alprazolam-D5, temazepam-D5, and diazepam-D5 in methanol.
- Drug working solutions –
 Level 2 = 5 μg/mL flunitrazepam /10 μg/mL 7-aminoclonazepam, zopiclone, zolpidem, zaleplon, oxazepam, nordiazepam, clonazepam, lorazepam, alprazolam, temazepam, and diazepam in methanol.
 Level 1 = 0.5 μg/mL flunitrazepam / 1 μg/mL 7-aminoclonazepam, zopiclone, zolpidem, zaleplon, oxazepam, nordiazepam, clonazepam, lorazepam, alprazolam, temazepam, and diazepam in methanol.
Calibrators and Controls:
Calibrators are prepared in 1 mL aliquots of each of the concentrations listed below in labeled 16 x 100 mm glass tubes using negative whole blood and the specified drug working solution.

Controls are prepared in the same manner as calibrators. A control is run prior to case samples, after every 10 samples throughout the batch, and at the end of the run.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>BenzoZ Mix Final Concentration (ng/mL)</th>
<th>BenzoZ Mix Working Solution Level 1</th>
<th>Volume Whole Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 / 10</td>
<td>10 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>2</td>
<td>10 / 20</td>
<td>20 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>3</td>
<td>25 / 50</td>
<td>50 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>4</td>
<td>50 / 100</td>
<td>100 µL</td>
<td>1000 µL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>BenzoZ Mix Final Concentration (ng/mL)</th>
<th>BenzoZ Mix Working Solution Level 2</th>
<th>Volume Whole Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>100 / 200</td>
<td>20 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>6</td>
<td>200 / 400</td>
<td>40 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>7</td>
<td>300 / 600</td>
<td>60 µL</td>
<td>1000 µL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators/controls as above in screw top tubes. Sample 1 mL from casework.
2. Add 100 µL of internal standard to each and vortex.
3. Add 1 mL of saturated sodium borate buffer to each and vortex.
4. Add 4 mL of ethyl acetate to each.
5. Cap and rotate at least 2 minutes.
6. Centrifuge at least 2 minutes.
7. Transfer upper organic layer to labeled tubes.
8. Evaporate sample to dryness 35-40 °C under nitrogen.

Reconstitution:
9. Reconstitute in 200 µL of reconstitution solution (9:1 Water:ACN) and vortex
 Optional: Centrifuge at least 2 min.
10. Transfer the sample from the tube to an autosampler vial/insert, cap and transfer to autosampler tray for LC/MSMS analysis.
LC/MS/MS Analysis:

LVMPD Instrument: TOX #2 LCMSMS
Instrument Make/Model: Agilent 6420 Triple Quadrupole LC/MSMS
Software: Agilent MassHunter
Acquisition Method: BenzoZ_B.m
Data Analysis Method: BenzoZ_B.m
Reporting Method: BenzoZ_B.m

LC Parameters:

- **Multisampler Temperature:** Room temperature
- **Injection Volume:** 3-6 µL (default is 5 µL)
- **Column:** Poroshell 120 EC-C18 2.1mm x 75 mm 2.7 micron
- **Column Temperature:** 35 °C
- **Needle Wash:** 20 seconds
- **Needle Wash Solution:** 1:1:1:1 Methanol:Water:IPA:ACN
- **Mobile Phase A:** 0.1% Formic Acid in Water
- **Mobile Phase B:** 0.1% Formic Acid in Acetonitrile
- **Flow Rate:** 0.5 mL/min
- **Gradient:**
 - Initial: 10% B
 - 4 min: 30% B
 - 8 min: 40% B
 - 8.5 min: 95% B
 - 10.5 min: 95% B
 - 11 min: 10% B

Post time 1.5 min
Note: Slight variations in gradient may exist due to instrument capabilities, column properties, etc.

MSD Parameters:

- **Ionization:** ESI
- **Polarity:** Positive
- **Gas Temperature:** 330 °C
- **Gas Flow:** 11 mL/min
- **Nebulizer Pressure:** 35 psi
- **Capillary Voltage:** 3000 V
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Quantitation Transition</th>
<th>Qualifier Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-Aminoclonazepam-D4</td>
<td>290.1 → 121.1</td>
<td>n/a</td>
</tr>
<tr>
<td>7-Aminoclonazepam</td>
<td>286.1 → 121.1</td>
<td>286.1 → 222.1</td>
</tr>
<tr>
<td>Zopiclone-D4</td>
<td>393.1 → 245.0</td>
<td>n/a</td>
</tr>
<tr>
<td>Zopiclone</td>
<td>389.1 → 245.0</td>
<td>389.1 → 217.1</td>
</tr>
<tr>
<td>Zolpidem-D6</td>
<td>314.2 → 235.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Zolpidem</td>
<td>308.2 → 235.1</td>
<td>308.2 → 263.1</td>
</tr>
<tr>
<td>Zaleplon-D4</td>
<td>310.2 → 268.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Zaleplon</td>
<td>306.1 → 236.1</td>
<td>306.1 → 264.1</td>
</tr>
<tr>
<td>Oxazepam-D5</td>
<td>292.1 → 246.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Oxazepam</td>
<td>287.1 → 241.0</td>
<td>287.1 → 269.1</td>
</tr>
<tr>
<td>Nordiazepam-D5</td>
<td>276.1 → 140.0</td>
<td>n/a</td>
</tr>
<tr>
<td>Nordiazepam</td>
<td>271.1 → 208.0</td>
<td>271.1 → 165.0</td>
</tr>
<tr>
<td>Clonazepam-D4</td>
<td>320.1 → 274.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>316.1 → 270.1</td>
<td>316.1 → 214.0</td>
</tr>
<tr>
<td>Lorazepam-D4</td>
<td>327.0 → 281.0</td>
<td>n/a</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>321.0 → 229.0</td>
<td>323.0 → 229.0</td>
</tr>
<tr>
<td>Alprazolam-D5</td>
<td>314.1 → 286.1</td>
<td>n/a</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>309.1 → 205.0</td>
<td>309.1 → 274.0</td>
</tr>
<tr>
<td>Flunitrazepam-D7</td>
<td>321.1 → 275.2</td>
<td>n/a</td>
</tr>
<tr>
<td>Flunitrazepam</td>
<td>314.1 → 268.1</td>
<td>314.1 → 239.1</td>
</tr>
<tr>
<td>Temazepam-D5</td>
<td>306.1 → 260.0</td>
<td>n/a</td>
</tr>
<tr>
<td>Temazepam</td>
<td>301.1 → 255.1</td>
<td>301.1 → 283.0</td>
</tr>
<tr>
<td>Diazepam-D5</td>
<td>290.1 → 154.0</td>
<td>n/a</td>
</tr>
<tr>
<td>Diazepam</td>
<td>285.1 → 193.1</td>
<td>285.1 → 91.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Model Type</th>
<th>Origin</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-Aminoclonazepam</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Zopiclone</td>
<td>Linear</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Zolpidem</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Zaleplon</td>
<td>Linear</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Oxazepam</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Nordiazepam</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Flunitrazepam</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Temazepam</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
<tr>
<td>Diazepam</td>
<td>Quadratic</td>
<td>Ignore</td>
<td>1/x</td>
</tr>
</tbody>
</table>
LVMPD FORENSIC LABORATORY
TECHNICAL PROCEDURES
TOXICOLOGY

4.1.07 Title: CONFIRMATION- CARISOPRODOL / MEPROBAMATE IN BLOOD

Purpose and Scope: This procedure is to quantitatively determine carisoprodol and meprobamate in whole blood.

Principle: The deuterium labeled analog of each compound is added to each sample as an internal standard. The compounds and the deuterated internal standards are extracted from blood. The extracted analytes are then quantitated by GC/MS operated in SIM mode.

Materials:
- Co-polymer SPE columns, (6cc Cerex® Clin II 691-0506, or equivalent)
- 16 x 125 mm glass culture tubes*
- 16 x 100 mm screw top glass culture tubes with screw caps*
- GC/MS autosampler vials, inserts, and TFE faced caps
*other size tubes may be used as necessary

Reagents:
- Distilled water
- Hexane
- Ethyl acetate

Reagent Solutions (Unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):
- Acetic acid, 100 mM
- Phosphate buffer, 100 mM, pH 6.0
- Eluting solution - Hexane / Ethyl Acetate (50/50). Prepare fresh daily for one time use.

Drug Solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.3.1 for QC instructions):
- Internal standard working solution – 20 µg/mL of Carisoprodol D₇ (Cerilliant #C-083) and Meprobamate D₇ (Cerilliant #M-131) in methanol.
- Drug working solution: 100 µg/mL of Carisoprodol / Meprobamate solution in methanol.

Calibrators and controls:
Calibrators are prepared in 1 mL aliquots of each of the concentrations listed below in labeled 16 x 125 mm glass culture tubes using negative whole blood and the specified drug working solution.

Controls are prepared in the same concentrations as calibrators. A control is run prior to case samples, after every 10 samples throughout the batch, and at the end of the run.
Calibrator / Control

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Final Concentration ng/mL</th>
<th>Carisoprodol/Meprobamate Working Solution 100 µg/mL</th>
<th>Volume Whole Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>10 µL</td>
<td>990 µL</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>20 µL</td>
<td>980 µL</td>
</tr>
<tr>
<td>3</td>
<td>5000</td>
<td>50 µL</td>
<td>950 µL</td>
</tr>
<tr>
<td>4</td>
<td>10,000</td>
<td>100 µL</td>
<td>900 µL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Preparation:

1. Prepare calibrators and controls as described above.
2. Pipet 1 mL of each casework blood specimen into labeled 16 x 125 mm glass culture tubes.
3. Add 50 µL of (20 µg/mL) internal standard to each tube.
4. Add 4 mL of phosphate buffer, 100 mM, pH 6.0, to each tube and vortex.
5. Centrifuge each tube for 10 min at ~3000 rpm.

Solid Phase Extraction:

6. Place the Cerex Clin II SPE columns into an extraction manifold.
7. Load samples and run through SPE columns.
8. Wash SPE columns as follows:
 a. 3 mL distilled water
 b. 1 mL acetic acid, 100 mM
9. Dry SPE columns for at least 20 minutes at ≥20 psi.
10. Add 2 mL hexane and aspirate.
11. Dry SPE columns for an additional 5 minutes at ≥20 psi.
12. Place labeled 16x100 mm screw top glass culture tubes under each SPE column and elute with 3 mL of hexane/ethyl acetate (50/50).
13. Transfer the tubes to an evaporator bath and evaporate to dryness at 40°C under a gentle stream of nitrogen.

Reconstitution:

14. Reconstitute with 100 µL ethyl acetate and vortex.
15. Transfer contents of each tube to an autosampler vial / insert, cap and transfer to autosampler tray for GC/MS analysis.

GC/MS Analysis:

Instrumentation: Agilent 7890A GC and 5975C Mass Spectrometer.
Column: HP-5MS, 30 m x 0.25 mm i.d., 0.25 µm film thickness (or equivalent, i.e. DB-5)
Acquisition method: SOMA_B.M
Data analysis method: SOMA_B.M
GC parameters:
- Injector temp: 250 ºC
- Thermal Aux 2 (Transfer Line): 280 ºC
- MS Source: 230 ºC
- MS Quad: 150 ºC
- Oven program: 100 ºC for 0.5 min, 30º / min to 280 ºC, hold at 280 ºC for 4.5 min.
- Injection mode and volume: split, 20:1 split ratio, 1-3 µL
- Pressure program: constant flow 1 mL/min

MS acquisition parameters (SIM): Use Electron Impact Detector

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Quantitation ion</th>
<th>Qualifier ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meprobamate - D₇</td>
<td>151</td>
<td>121</td>
</tr>
<tr>
<td>Meprobamate</td>
<td>144</td>
<td>114, 96</td>
</tr>
<tr>
<td>Carisoprodol - D₇</td>
<td>191</td>
<td>252</td>
</tr>
<tr>
<td>Carisoprodol</td>
<td>245</td>
<td>184, 158</td>
</tr>
</tbody>
</table>

NOTE: A split liner (RESTEK Low Pressure Drop Liner #21033 or equivalent) must be used for this procedure.

Calibration Models:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Model Type</th>
<th>Origin</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meprobamate</td>
<td>Linear</td>
<td>Ignore</td>
<td>None</td>
</tr>
<tr>
<td>Carisoprodol</td>
<td>Linear</td>
<td>Ignore</td>
<td>None</td>
</tr>
</tbody>
</table>
LVMPD FORENSIC LABORATORY
TECHNICAL PROCEDURES
TOXICOLOGY

4.2.01 Title: CONFIRMATION – AMP / METH / MDA / MDMA IN URINE

Purpose and Scope: This procedure is intended to quantitatively determine amphetamine, methamphetamine, methylenedioxyamphetamine (MDA), and methylenedioxymethamphetamine (MDMA) in urine.

Principle: The deuterium labeled analog of each compound is added to each sample as an internal standard. The compounds and the deuterated internal standards are extracted from urine. The extracted analytes are then derivatized using pentafluoropropionic acid anhydride (PFAA) and quantitated by GC/MS operated in SIM mode.

Note: PFAA does not convert pseudoephedrine and ephedrine to methamphetamine in appreciable amounts.

Materials:
- Co-polymer SPE columns, (3cc Cerex® Polycrom™ Clin II 691-0353, or equivalent)
- 16 x 100 mm screw top glass culture tubes with screw caps*
- 12 x 75 mm glass culture tubes*
- 10 x 75 mm glass culture tubes*
- 10 mm snap-caps
- GC/MS autosampler vials, inserts, and TFE faced caps
 * Other size tubes may be used as necessary

Reagents:
Chemicals:
- Distilled water
- Methanol
- Ethyl acetate
- Ammonium hydroxide
- Pentafluoropropionic acid anhydride (PFAA)

Reagent Solutions (Unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):
- 1% Acidic methanol
- Phosphate buffer, 100 mM, pH 6.0
- Acetic acid, 100 mM
- Eluting Solution – ethyl acetate containing 2% ammonium hydroxide (pH 12). Add additional ammonium hydroxide as needed to achieve the required pH (pH = 12).
 Prepare fresh daily for one time use.
 QC: Check pH with pH paper.
Drug Solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.3.1 for QC instructions):

- Internal standard working solution – 20 µg/mL of Amp-D_{11} / Meth-D_{14} / MDA-D_{5} / MDMA-D_{5} in methanol.
- Drug working solution – 10 µg/mL of Amp/Meth/MDA / MDMA in methanol.

Calibrators and Controls:
Calibrators are prepared in 1 mL aliquots of each of the concentrations listed below in labeled 12 x 75 mm glass culture tubes using negative urine and the specified drug working solution.

Controls are prepared in the same concentrations as calibrators. A control is run prior to case samples, after every 10 samples throughout the batch, and at the end of the run.

NOTE: A commercially prepared control (i.e. Biochemical Diagnostics Inc. Detectabuse® # 18001225) may be used as the control prior to case samples.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Final Concentration ng/mL</th>
<th>Amp/Meth/MDA/MDMA Working Solution 10 µg/mL</th>
<th>Volume Negative Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>10 µL</td>
<td>990 µL</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>25 µL</td>
<td>975 µL</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>50 µL</td>
<td>950 µL</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td>100 µL</td>
<td>900 µL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators and controls as described above.
2. Pipet 1 mL of each casework urine specimen and the external urine control, if applicable, into labeled 12 x 75 mm glass culture tubes.
3. Add 25 µL of (20 µg/mL) internal standard mix to each tube.
4. Add 1 mL of phosphate buffer, 100 mM, pH 6.0, to each tube.

Solid Phase Extraction:
5. Place the Cerex Polycrom Clin II SPE columns into an extraction manifold.
6. Load samples and run through SPE columns.
7. Wash the SPE columns as follows:
 a. 1 mL distilled water
 b. 1 mL 100 mM acetic acid
 c. 1 mL methanol
 d. 1 mL ethyl acetate
8. Dry SPE columns for at least 10 minutes at ≥20 psi under a gentle stream of nitrogen.
9. Place labeled 10 x 75 mm culture tubes under each SPE column and elute with 1 mL of ethyl acetate containing 2% ammonium hydroxide (pH=12).
10. Add 100 μL of 1% acidic methanol to each tube.
11. Transfer the tubes to an evaporator bath and evaporate to dryness at 30 °C under a gentle stream of nitrogen. **Do not over dry because the amphetamine compounds are volatile.**

Derivatization:
11. Add 50 μL of PFAA and 50 μL of ethyl acetate to each tube and cap. Incubate at 70 C for 30 minutes.
12. Remove from heat and allow the samples to cool.
13. Transfer the tubes to the evaporator bath and again evaporate to dryness at 30 °C under a gentle stream of nitrogen.

Reconstitution:
14. Reconstitute with 50 μL of ethyl acetate.
15. Transfer contents to GC/MS autosampler vials/inserts, cap and transfer samples to an autosampler tray for GC/MS analysis.

GC/MS Analysis:
Instrumentation: Agilent 7890A GC and 5975C Mass Spectrometer.
Column: HP-5MS, 30 m x 0.25 mm i.d., 0.25 μm film thickness (or equivalent, i.e. DB-5)
Acquisition method: METH_U.M
Data analysis method: METH_U.M
GC parameters:
 - Injector temp: 250 C
 - Thermal Aux 2 (Transfer Line): 280 C
 - MS Source: 230 C
 - MS Quad: 150 C
 - Oven program: 70 C for 1 min, 20 C/min to 280 C, hold at 280 C for 3 min.
 - Injection mode and volume: splitless, 1-3 μL
 - Pressure program: constant flow 1 mL/min

MS acquisition parameters (SIM): Use Electron Impact Detector

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Quantitation ion</th>
<th>Qualifier ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphetamine-D<sub>11</sub></td>
<td>194</td>
<td>128</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>190</td>
<td>118, 91</td>
</tr>
<tr>
<td>Methamphetamine-D<sub>14</sub></td>
<td>211</td>
<td>163</td>
</tr>
<tr>
<td>Methamphetamine</td>
<td>204</td>
<td>160, 118</td>
</tr>
<tr>
<td>MDA-D<sub>5</sub></td>
<td>330</td>
<td>167</td>
</tr>
<tr>
<td>MDA</td>
<td>325</td>
<td>190, 162</td>
</tr>
<tr>
<td>MDMA-D<sub>5</sub></td>
<td>208</td>
<td>344</td>
</tr>
<tr>
<td>MDMA</td>
<td>204</td>
<td>339, 160</td>
</tr>
</tbody>
</table>
Special Reporting Criteria:
To be reported positive for methamphetamine a specimen must also contain amphetamine at a concentration equal or greater than 100 ng/mL.
4.2.02 Title: CONFIRMATION - COCAINE / BENZOYLECGONINE IN URINE

Purpose and Scope: This procedure is intended to quantitatively determine cocaine and benzoylecgonine (cocaaine metabolite) in urine.

Principle: The deuterium labeled analog of cocaine and benzoylecgonine is added to each sample as an internal standard. The compounds and the deuterated internal standards are extracted from urine. The extracted benzoylecgonine analytes are then converted to the trimethylsilyl derivatives while the cocaine analytes remain underivatized. All analytes are quantitated by GC/MS operated in SIM mode.

Materials:
- SPE columns (UCT Clean Screen ® CSDAU206, or equivalent)
- 16 x 125 mm glass culture tubes*
- 16 x 100 mm screw top glass culture tubes with screw caps*
- GC/MS autosampler vials, inserts, and TFE faced caps*
*other sizes tubes may be used as necessary

Reagents:

Chemicals:
- Methanol
- Distilled water
- Ethyl acetate
- Ammonium hydroxide
- BSTFA with 1% TMCS

Reagent Solutions (Unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):
- Hydrochloric acid, 0.1 M
- Phosphate buffer, 100 mM, pH 6.0
- Eluting solution - methylene chloride/isopropanol/ammonium hydroxide (78/20/2).
 Add additional ammonium hydroxide as necessary to achieve the required pH (pH = 12).
 Prepare fresh daily for one time use.
- QC: Check pH with pH paper.

Drug Solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.3.1 for QC instructions):
- Drug working solution – 10 µg/mL of Cocaine / BZE in methanol.
- Internal standard working solution - 10 µg/mL Cocaine-D₃ / BZE-D₃ in methanol.
Calibrators and Controls:
Calibrators are prepared in 1 mL aliquots of each of the concentrations listed below in labeled 16 x 125 mm glass culture tubes using negative urine and the specified drug working solution.

Controls are prepared in the same concentrations as calibrators. A control is run prior to case samples, after every 10 samples throughout the batch, and at the end of the run.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Final Concentration ng/mL</th>
<th>COC/BZE Working Solution 10 µg/mL</th>
<th>Volume Negative Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>10 µL</td>
<td>990 µL</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>15 µL</td>
<td>985 µL</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>50 µL</td>
<td>950 µL</td>
</tr>
<tr>
<td>4</td>
<td>1000</td>
<td>100 µL</td>
<td>900 µL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators and controls as described above.
2. Pipet 1 mL of each casework urine specimen into labeled 16 x 125 mm glass culture tubes.
3. Add 25 µL of (10 µg/mL) internal standard solution to each tube.
4. Add 2 mL of phosphate buffer, 100 mM, pH 6.0, to each tube, and vortex.

Solid Phase Extraction:
5. Place SPE extraction columns into an extraction manifold.
6. Condition SPE columns as follows:
 a. 3 mL methanol
 b. 3 mL distilled water
 c. 1 mL phosphate buffer, 100 mM, pH 6.0
7. Load samples and run through SPE columns.
8. Wash SPE columns as follows:
 a. 3 mL distilled water
 b. 2 mL 0.1 M hydrochloric acid
 c. 3 mL methanol
9. Dry SPE columns for at least 15 minutes at ≥ 20 psi.
10. Place 16 x 100 mm screw top glass culture tubes in manifold under each SPE column and elute with 3 mL of methylene chloride/ isopropanol/ ammonium hydroxide solution (78/20/2, pH = 12).
11. Transfer the tubes to an evaporator bath and evaporate to dryness at 40 °C under a gentle stream of nitrogen.
Derivatization:
12. Add 50 μL of ethyl acetate and 50 μL of BSTFA with 1% TMCS to each tube and cap. Incubate at 70 °C for 20 minutes.
13. Remove from heat and allow the samples to cool.
14. Transfer contents to GC/MS autosampler vials/inserts, cap and transfer samples to an autosampler tray for GC/MS analysis.

GC/MS Analysis:
Instrumentation: Agilent Technologies 7890A GC and 5975C Mass Spectrometer.
Column: HP-5MS, 30 m x 0.25 mm i.d., 0.25 μm film thickness (or equivalent)
Acquisition method: COC_U.M
Data analysis method: COC_U.M
GC parameters:
 Injector Temp: 250 C
 Thermal Aux 2 (Transfer Line): 300 C
 MS Source: 230 C
 MS Quad: 150 C
 Oven program: 100 C for 0.25 min, 35 C/min to 220 C, 20 C/min to 300 C, hold at 300 C for 4 min.
 Injection mode and volume: splitless, 1-3 μL
 Pressure program: constant flow 1 mL/min

MS acquisition parameters(SIM) : Use Electron Impact Detector

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Quantitation ion</th>
<th>Qualifier ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocaine-D<sub>3</sub></td>
<td>185</td>
<td>201</td>
</tr>
<tr>
<td>Cocaine</td>
<td>182</td>
<td>198, 303</td>
</tr>
<tr>
<td>Benzoylecgonine-D<sub>3</sub></td>
<td>243</td>
<td>259</td>
</tr>
<tr>
<td>Benzoylecgonine</td>
<td>240</td>
<td>256, 361</td>
</tr>
</tbody>
</table>
4.2.03 Title: CONFIRMATION - THCA IN URINE

Purpose and Scope: This procedure is intended to quantitatively determine in urine the principle metabolite of marijuana, 11-nor-9-carboxy-Δ⁹-tetrahydrocannabinol (also called THCA, THC-COOH, carboxy THC, 11-COOH-THC, or THC carboxylic acid).

Principle: The deuterium labeled analog of THCA is added to each sample as an internal standard. THCA and the deuterated internal standard are extracted from urine and analyzed by LC/MS/MS.

Materials:
- SPE column (UCT Clean Screen ® CSTHC206, or equivalent)
- 16 x 100 mm screw top silanized glass culture tubes with screw caps (other size tubes may be used as necessary)
- 16 x 100 mm silanized glass culture tubes (other size tubes may be used as necessary)
- LC-MS/MS autosampler vials with inserts and caps

Reagents:
- Chemicals:
 - Acetonitrile
 - Distilled water
 - Ethyl acetate
 - Glacial acetic acid
 - Hexane
- Methanol Reagent Solutions (Unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):
 - Sodium hydroxide 10 N
 - Hydrochloric acid, 100 mM
 - 100 mM hydrochloric acid / acetonitrile (60/40). Prepare fresh daily for one time use.
 - Eluting solution - hexane / ethyl acetate / glacial acetic acid (80/18/2). Prepare fresh daily for one time use.

Drug Solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.3.1 for QC instructions):
- Internal standard working solution - THCA-D₃ 1 μg/mL in methanol.
- Drug standard working solution – THCA 1.5 μg/mL in methanol.
- Drug control working solution – THCA 1.5 μg/mL in methanol.
- THCA glucuronide control working solution – THCA glucuronide 1 μg/mL in methanol.
Calibrators and Controls:
Calibrators are prepared in 1 mL aliquots of each of the concentrations listed below in labeled 16 x 100 mm screw top silanized glass culture tubes using negative urine and the specified drug working solution.

Controls are prepared in the same concentrations as calibrators. A control is run prior to case samples, after every 10 samples throughout the batch, and at the end of the run.

A THCA glucuronide control will be used to verify the effectiveness of the hydrolysis step and is run following the negative control.

NOTE: A commercially prepared control (i.e. Biochemical Diagnostics Inc. Detectabuse® # 18001225) may be used as the control prior to case samples.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>THCA Final Concentration ng/mL</th>
<th>THCA Working Solution 1.5 µg/mL</th>
<th>Volume Negative Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>10 µL</td>
<td>990 µL</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>20 µL</td>
<td>980 µL</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>50 µL</td>
<td>950 µL</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>100 µL</td>
<td>900 µL</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>200 µL</td>
<td>800 µL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>1000 µL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control</th>
<th>THCA Final Concentration ng/mL</th>
<th>THCA Glucuronide Control Working Solution 1 µg/mL</th>
<th>Volume Negative Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>THCA Glucuronide Control</td>
<td>66</td>
<td>100 µL</td>
<td>900 µL</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators and controls as described above.
2. Pipet 1 mL of each casework urine specimen, and the commercially prepared urine control as applicable, into labeled 16 x 100 mm screw top silanized glass culture tubes.
3. Add 50 µL of (1 µg /mL) internal standard and 50 µL of 10 N sodium hydroxide, to each tube, cap and vortex.
4. Hydrolyze for 20 min at 60 ºC in an oven/heat block. Remove from the heat source and allow to cool.
5. Add 500 µL of glacial acetic acid and vortex.
Note: The addition of glacial acetic acid adjusts the pH of the urine to approximately 3.5 ± 0.5. If THCA/THCA-D₃ is not extracted or poorly extracted from a urine sample, the pH should be checked to ensure it is approximately 3.5 ± 0.5 when the sample is re-extracted.
Solid Phase Extraction:
6. Place SPE columns into an extraction manifold and condition as follows:
 a. 3 mL methanol
 b. 3 mL distilled water
 c. 1 mL 100 mM hydrochloric acid
7. Load samples and run through SPE columns.
8. Wash SPE columns as follows:
 a. 2 mL distilled water
 b. 2 mL (60/40) 100 mM hydrochloric acid / acetonitrile
9. Dry SPE columns for at least 15 minutes at ≥ 20 psi.
10. Add 200 µL hexane and dry SPE columns for at least 5 minutes at ≥ 20 psi.
11. Place labeled 16x100 mm silanized glass culture tubes in manifold under each SPE column and elute with 3 mL of (80/18/2) hexane / ethyl acetate / glacial acetic acid.
12. Transfer the tubes to an evaporator bath and evaporate to dryness at 40° C under a gentle stream of nitrogen.

Reconstitution:
13. Add 500 µL methanol to each tube and vortex
14. Add 500 µL distilled water to each tube and vortex.
15. Transfer the contents of each tube into an LC/MS/MS autosampler vial. Cap and transfer to autosampler tray for LC/MS/MS analysis.

LC/MS/MS Analysis:
LVMPD Instrument: Tox #1 LC/MS/MS
Instrument Make/Model: Agilent 6420 LC/MS/MS
Acquisition Method: THCA_U.M
Data Analysis Method: THCA_U.M

LC Parameters:
Multisampler Temperature 4.0 °C – Room Temperature
Injection Volume 2.0 – 30.0 µL
Column Agilent Poroshell 120 EC-C18 (3.0 x 50 mm, 2.7 µm)
Column Temperature 40 °C
Needle Wash 10 s
Mobile Phase A 5 mM Ammonium Acetate in Water
Mobile Phase B Acetonitrile
Flow Rate 0.4 mL/min
Gradient
 Initial 40% B
 1.0 minutes 40% B
 7.0 minutes 95% B
Stop Time 10.5 minutes
Post Time 3.0 minutes

MSD Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionization</td>
<td>ESI</td>
</tr>
<tr>
<td>Polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Gas Temperature</td>
<td>350 °C</td>
</tr>
<tr>
<td>Gas Flow</td>
<td>10 L/min</td>
</tr>
<tr>
<td>Nebulizer Pressure</td>
<td>20 psi</td>
</tr>
<tr>
<td>Capillary</td>
<td>5,000 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Quantitation Transition</th>
<th>Qualifier Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>THCA-D3</td>
<td>348.2 → 302.1</td>
<td>n/a</td>
</tr>
<tr>
<td>THCA</td>
<td>345.2 → 299.1</td>
<td>345.2 → 192.9</td>
</tr>
</tbody>
</table>
4.2.04 Title: CONFIRMATION - CODEINE / MORPHINE IN URINE

Purpose and Scope: This procedure is intended to quantitatively determine total codeine and total morphine in urine. When morphine is present above the reporting threshold, continue with confirmation of 6-acetylmorphine (Chapter 4.2.08).

Principle: The deuterium labeled analog of codeine and morphine is added to each sample as an internal standard. The compounds and the deuterated internal standards are extracted from urine. The extracted analytes are then converted to the trimethylsilyl derivatives and are quantitated by GC/MS operated in SIM mode.

Materials:
- SPE columns (UCT Clean Screen CSDAU206, or equivalent)
- 16 x 100 mm screw top glass culture tubes *
- GC/MS autosampler vials, inserts, and TFE faced caps *
 *other size tubes may be used as necessary

Reagents:
- **Chemicals:**
 - Distilled water
 - Methanol
 - BSTFA with 1% TMCS
 - Ethyl acetate
- **Reagent Solutions (Unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):**
 - Red abalone β-glucuronidase enzyme solution in 100 mM acetate buffer pH 5.0 (5,000 units/mL, e.g. UCT BETA-GLUC-10 or equivalent). Prepare fresh daily for one time use.
 - Acetate buffer, 100 mM, pH 5.0
 - Phosphate buffer, 100 mM, pH 6.0
 - Acetate buffer, 100 mM, pH 4.5
 - Eluting Solution - methylene chloride/isopropanol/ammonium hydroxide (78/20/2).
 Add additional ammonium hydroxide as needed to achieve the required pH (pH = 12)
 Prepare fresh daily for one time use.
 - QC: Check pH with pH paper.
- **Drug Solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.3.1 for QC instructions):**
 - Drug working solution - 50 µg/mL COD/MOR in methanol.
 - Internal standard working solution - 20 µg/mL COD-D₃/MOR-D₃ in methanol.
Morphine-3β-D-Glucuronide control working solution - Morphine-3β-D-Glucuronide 3240 ng/mL in negative urine

Calibrators and Controls:
Calibrators are prepared in 1 mL aliquots of each of the concentrations listed below in labeled 16 x 100 mm screw top glass culture tubes using negative urine and the specified drug working solution.

Controls are prepared in the same concentrations as calibrators. A control is run prior to case samples, after every 10 samples throughout the batch, and at the end of the run.

A Morphine-3β-D-Glucuronide control will be used to verify the effectiveness of the hydrolysis step and is run following the negative control. This control may be prepared in-house or commercially prepared (e.g., Biochemical Diagnostics Inc. Detectabuse® # 18001225).

NOTE: A commercially prepared control (e.g., Biochemical Diagnostics Inc. Detectabuse® # 18001225) may be used as the control prior to case samples.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Codeine / Morphine Final Concentration ng/mL</th>
<th>Codeine / Morphine Working Solution 50 µg/mL</th>
<th>Volume Negative Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>20 µL</td>
<td>980 µL</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>40 µL</td>
<td>960 µL</td>
</tr>
<tr>
<td>3</td>
<td>4000</td>
<td>80 µL</td>
<td>920 µL</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
<td>100 µL</td>
<td>900 µL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control</th>
<th>Total Morphine Final Concentration ng/mL</th>
<th>Morphine-3β-D-Glucuronide Control Working Solution 3240 ng/mL</th>
<th>Volume Negative Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine-3β-D-Glucuronide Control</td>
<td>2000</td>
<td>1 mL</td>
<td>0</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators and controls as described above.
2. Pipet 1 mL of each casework urine specimen into labeled 16 x 100 mm screw top glass culture tubes.
3. Add 50 µL of 20 µg/mL internal standard to each tube.
4. Add 1 mL prepared red abalone β-glucuronidase enzyme solution in acetate buffer pH 5.0 to each sample and vortex.
5. Incubate for 90 minutes at 65 °C. Cool before proceeding.
6. Add 2 mL of phosphate buffer, 100 mM, pH 6.0. Mix / vortex.
Solid Phase Extraction:
7. Place SPE columns into an extraction manifold.
8. Condition SPE columns as follows:
 a. 3 mL methanol
 b. 3 mL distilled water
 c. 1 mL phosphate buffer, 100 mM, pH 6.0
9. Load samples and run through SPE columns.
10. Wash SPE columns as follows:
 a. 2 mL distilled water
 b. 2 mL acetate buffer, 100 mM, pH 4.5
 c. 3 mL methanol
11. Dry SPE columns for at least 15 minutes at ≥ 20 psi.
12. Place labeled 16x100 mm screw top glass culture tubes in manifold under each SPE column and elute with 3 mL of methylene chloride/isopropanol/ammonium hydroxide (78/20/2).
13. Transfer the tubes to an evaporator bath and evaporate to dryness at ~40°C under a gentle stream of nitrogen.

Derivatization:
14. Add 50 µL of BSTFA and 50 µL of ethyl acetate to each tube, cap and incubate at ~70 °C for 30 minutes.
15. Remove from heat and allow samples to cool.
16. Transfer contents to GC/MS autosampler vials/inserts, cap and transfer samples to an autosampler tray for GC/MS analysis.

GC/MS Analysis:
Instrumentation: Agilent 7890A GC and 5975C mass spectrometer.
Column: HP-5MS, 30 m x 0.25 mm i.d., 0.25 µm film thickness (or equivalent e.g., DB-5)
Acquisition method: OPI_U.M
Data analysis method: OPI_U.M
GC parameters:
 Injector temp: 250 °C
 Thermal Aux 2 (Transfer Line): 280 °C
 MS Source: 230 °C
 MS Quad: 150 °C
 Oven program: 100 °C for 0.25 min, 30 °C/min to 280 °C hold at 280 °C for 7.25 min.
 Injection mode and volume: split, 10:1 split ratio, 1-3 µL
 Pressure program: constant flow 1 mL/min

MS acquisition parameters (SIM): Use Electron Impact Detector

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Quantitation ion</th>
<th>Qualifier ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codeine-D₃</td>
<td>374</td>
<td>346</td>
</tr>
<tr>
<td>Codeine</td>
<td>371</td>
<td>343, 234</td>
</tr>
</tbody>
</table>
Morphine-D$_3$ 432 290
Morphine 429 324, 287

NOTE: A split liner (RESTEK Low Pressure Drop Liner #21033 or equivalent must be used for this procedure.
4.2.05 Title: CONFIRMATION - HYDROCODONE IN URINE

Purpose and Scope: This procedure is intended to quantitatively determine hydrocodone in urine.

Principle: The deuterium labeled analog of hydrocodone is added to each sample as an internal standard. Hydrocodone and the deuterated internal standard are extracted from urine. The extracted analytes are then quantitated by GC/MS operated in SIM mode.

Materials:
- SPE columns (UCT Clean Screen CSDAU206, or equivalent)
- 16 x 125 mm glass culture tubes*
- 16 x 100 mm screw top glass culture tubes *
- GC/MS autosampler vials, inserts, and TFE faced caps
 Other size tubes may be used as necessary

Reagents:
- Chemicals
 - Distilled water
 - Methanol
 - Methylene chloride
 - Isopropanol
 - Ammonium hydroxide
 - Ethyl acetate
- Reagent Solutions (Unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):
 - Phosphate buffer, 100 mM, pH 6.0
 - Acetate buffer, 100 mM, pH 4.5
 - Eluting Solution - methylene chloride/isopropanol/ammonium hydroxide (78/20/2).
 Add additional ammonium hydroxide as needed to achieve the required pH (pH = 12).
 Prepare fresh daily for one time use.
 - QC: Check pH with pH paper.

Drug Solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.3.1 for QC instructions):
- Drug working solution - 5 µg/mL Hydrocodone in methanol.
- Internal standard working solution - 2 µg/mL Hydrocodone-D₃ in methanol.
Calibrators and Controls:
Calibrators are prepared in 1 mL aliquots of each of the concentrations listed below in labeled 16 x 125 mm glass culture tubes using negative urine and the specified drug working solution.

Controls are prepared in the same concentrations as calibrators. A control is run prior to case samples, after every 10 samples throughout the batch, and at the end of the run.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Hydrocodone Final Concentration ng/mL</th>
<th>Hydrocodone Working Solution 5 µg/mL</th>
<th>Volume Negative Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>20 µL</td>
<td>980 µL</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>40 µL</td>
<td>960 µL</td>
</tr>
<tr>
<td>3</td>
<td>400</td>
<td>80 µL</td>
<td>920 µL</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>100 µL</td>
<td>900 µL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators and controls as described above.
2. Pipet 1 mL of each casework urine specimen into labeled 16 x 125 mm glass culture tubes.
3. Add 50 µL of 2 µg/mL internal standard to each tube.
4. Add 2 mL of phosphate buffer, 100 mM, pH 6.0, and vortex.

Solid Phase Extraction:
5. Place SPE columns into an extraction manifold.
6. Condition SPE columns as follows:
 a. 3 mL methanol
 b. 3 mL distilled water
 c. 1 mL phosphate buffer, 100 mM, pH 6.0
7. Load samples and run through SPE columns.
8. Wash SPE columns as follows:
 a. 2 mL distilled water
 b. 2 mL acetate buffer, 100 mM, pH 4.5
 c. 3 mL methanol
9. Dry SPE columns for at least 15 minutes at ≥ 20 psi.
10. Place labeled 16x100 mm screw top glass culture tubes in manifold under each SPE column and elute with 3 mL of methylene chloride/isopropanol/ammonium hydroxide (78/20/2, pH=12, approximately).
11. Transfer the tubes to an evaporator bath and evaporate to dryness at 40 °C under a gentle stream of nitrogen.

Reconstitution:
12. Add 100 µL of ethyl acetate and vortex.
13. Transfer contents to GC/MS autosampler vials/inserts, cap and transfer samples to an autosampler tray for GC/MS analysis.

GC/MS Analysis:

Instrumentation: Agilent 7890A GC and 5975C mass spectrometer.

Column: HP-5MS, 30m x 0.25 mm i.d., 0.25 μm film thickness or equivalent (e.g. DB-5)

Acquisition method: HYC_ U.M

Data analysis method: HYC_ U.M

GC parameters:

- Injector temp: 280 ºC
- Thermal Aux 2 (Transfer Line): 280 ºC
- MS Source: 230 ºC
- MS Quad: 150 ºC
- Oven program: 100 ºC for 0.25 min, 30 ºC/min to 280 ºC, hold at 280 ºC for 7.25 min.
- Injection mode and volume: splitless, 1-3 μL
- Pressure program: constant flow 1 mL/min

MS acquisition parameters (SIM): Use Electron Impact Detector

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Quantitation ion</th>
<th>Qualifier ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocodone-D₃</td>
<td>302</td>
<td>287</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>299</td>
<td>284, 270</td>
</tr>
</tbody>
</table>
LVMPD FORENSIC LABORATORY
TECHNICAL PROCEDURES
TOXICOLOGY

4.2.06 Title: CONFIRMATION - PHENCYCLIDINE IN URINE

Purpose and Scope: This procedure is intended to quantitatively determine phencyclidine in urine.

Principle: The deuterium labeled analog of phencyclidine is added to each sample as an internal standard. Phencyclidine and the deuterated internal standard are extracted from urine. The extracted analytes are then quantitated by GC/MS operated in SIM mode.

Materials:
- Co-polymer SPE columns, (3 cc Cerex® Polycrom™ Clin II 691-0353, or equivalent)
- 12 x 75 mm glass culture tubes*
- 10 x 75 mm glass culture tubes*
- GC/MS autosampler vials, inserts, and TFE faced caps
 *other size tubes may be used as necessary

Reagents:

Chemicals:
- Ethyl acetate
- Methanol
- Isopropanol
- Ammonium hydroxide

Reagent Solutions (Unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):
- Phosphate buffer, 100 mM, pH 6.0
- Acetic acid, 0.1 M
- Eluting Solution - ethyl acetate/isopropanol/ammonium hydroxide (90/6/4). Add additional ammonium hydroxide as needed to achieve the required pH (pH = 12). Prepare fresh daily for one time use.
 QC: Check pH with pH paper.

Drug Solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.3.1 for QC instructions):
- Internal standard working solution – 2.0 μg/mL Phencyclidine-D₅ in methanol.
- Drug working solutions – 1.0 μg/mL Phencyclidine in methanol.
Calibrators and Controls:
Calibrators are prepared in 1 mL aliquots of each of the concentrations listed below in labeled 12 x 75 mm glass culture tubes using negative urine and the specified drug working solution.

Controls are prepared in the same concentrations as calibrators. A control is run prior to case samples, after every 10 samples throughout the batch, and at the end of the run.

NOTE: A commercially prepared control (e.g., Biochemical Diagnostics Inc. Detectabuse® # 18001225) may be used as the control prior to case samples.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Phencyclidine Final Concentration ng/mL</th>
<th>Phencyclidine Working Solution 1 µg/mL</th>
<th>Volume Negative Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>15 µL</td>
<td>985 µL</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>25 µL</td>
<td>975 µL</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>50 µL</td>
<td>950 µL</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>100 µL</td>
<td>900 µL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators and controls as described above.
2. Pipet 1 mL of each casework urine specimen into labeled 12 x 75 mm glass culture tubes.
3. Add 25 µL of Phencyclidine-D₅ internal standard (2 µg/mL) to each tube.
4. Add 1 mL of phosphate buffer, 100 mM, pH 6.0, to each tube and vortex.

Solid Phase Extraction:
5. Place the Cerex Polycrom Clin II SPE columns into an extraction manifold.
6. Load samples and run through SPE columns.
7. Wash the SPE columns as follows:
 a. 1 mL distilled water
 b. 1 mL 0.1 M acetic acid
 c. 1 mL methanol
8. Dry SPE columns for at least 15 minutes at ≥ 20 psi.
9. Place collection tubes in manifold under each SPE column and elute with 2 mL of ethyl acetate/isopropanol/ammonium hydroxide (90/6/4).
10. Transfer the tubes to an evaporator bath and evaporate to dryness at 40°C under a gentle stream of nitrogen.

Reconstitution:
11. Reconstitute in 50 µL ethyl acetate and vortex.
12. Transfer contents of each tube to an autosampler vial/insert/cap and transfer to an autosampler tray for GC/MS analysis.
GC/MS Analysis:

Instrumentation: Agilent 7890A GC and 5975C Mass Spectrometer.
Column: HP-5MS, 30 m x 0.25 mm i.d., 0.25 μm film thickness (or equivalent, e.g. DB-5)
Acquisition method: PCP_U.M
Data analysis method: PCP_U.M

GC parameters:
- Injector temp: 250 ºC
- Thermal Aux 2 (Transfer Line): 300 ºC
- MS Source: 230 ºC
- MS Quad: 150 ºC
- Oven program: 150 ºC for 1 min, 25 ºC/min to 300 ºC, hold at 300 ºC for 3 min
- Injection mode and volume: splitless, 1-3 μL
- Pressure program: constant flow 1 mL/min

MS acquisition parameters (SIM): Use Electron Impact Detector

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Quantitation ion</th>
<th>Qualifier ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phencyclidine-D$_5$</td>
<td>246</td>
<td>190</td>
</tr>
<tr>
<td>Phencyclidine</td>
<td>242</td>
<td>200, 186</td>
</tr>
</tbody>
</table>
4.2.07 Title: CONFIRMATION - BENZODIAZEPINES IN URINE

Purpose and Scope: This procedure is intended to quantitatively determine nordiazepam, oxazepam, lorazepam, temazepam, α-OH-alprazolam, and α-OH-triazolam in urine.

Principle: The deuterium labeled analogs of the target analytes are added to each sample as an internal standard. The compounds and their deuterated internal standards are extracted from urine. The extracted analytes are then converted to the trimethylsilyl derivatives and quantitated by GC/MS operated in SIM mode.

Materials:
- SPE columns (UCT Clean Screen CSDAU206, or equivalent)
- 16 x 100 mm screw top glass culture tubes *
- GC/MS autosampler vials, inserts, and TFE faced caps
 *Other size tubes may be used as necessary

Reagents:
Chemicals:
- Distilled water
- Sodium phosphate dibasic, anhydrous (Na₂HPO₄)
- Sodium phosphate monobasic monohydrate (NaH₂PO₄·H₂O)
- Acetonitrile
- Hexane
- Ethyl acetate
- BSTFA with 1% TMCS

Reagent Solutions (Unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):
- β-glucuronidase enzyme solution (5000 units/mL) in 100 mM acetate buffer pH 5.0. Prepare fresh daily for one time use.
- Phosphate buffer, 100 mM, pH 6.0
- Acetate buffer, 100 mM, pH 5.0
- 20% acetonitrile in phosphate buffer, 100 mM, pH 6.0

Drug Solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.3.1 for QC instructions):
- Internal standard working solution - 10 µg/mL each of nordiazepam-D₅, oxazepam-D₅, lorazepam-D₄, temazepam-D₅, α-OH-alprazolam-D₅ and α-OH-triazolam-D₄ in methanol.
- Drug working solutions – 10 µg/mL each of nordiazepam, oxazepam, lorazepam, temazepam, α-OH-alprazolam, and α-OH-triazolam in methanol.
Oxazepam glucuronide control working solution – 10 µg/mL of oxazepam glucuronide in distilled water.

Calibrators and Controls:
Calibrators are prepared in 2 mL aliquots of each of the following concentrations listed below in labeled 16 x 100 mm glass culture tubes using negative urine and the specified drug working solution.

Controls are prepared in the same concentrations as calibrators. A control is run prior to case samples, after every 10 samples throughout the batch, and at the end of the run.

An oxazepam glucuronide control will be used to verify the effectiveness of the hydrolysis step and is run immediately following the negative control.

NOTE: A commercially prepared control (i.e. Biochemical Diagnostics Inc. Detectabuse® # 18002165) may be used as the control prior to case samples.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>Benzodiazepine Mix Final Concentration ng/mL</th>
<th>Benzodiazepine Mix Working Solution 10 µg/mL</th>
<th>Volume Negative Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>10 µL</td>
<td>1.990 mL</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>20 µL</td>
<td>1.980 mL</td>
</tr>
<tr>
<td>3</td>
<td>250</td>
<td>50 µL</td>
<td>1.950 mL</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>100 µL</td>
<td>1.900 mL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>2 mL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control</th>
<th>Oxazepam Final Concentration ng/mL</th>
<th>Oxazepam Glucuronide Control Working Solution 10 µg/mL</th>
<th>Volume Negative Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxazepam Glucuronide Control</td>
<td>310</td>
<td>100 µL</td>
<td>1.900 mL</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators and controls as described above.
2. Pipet 2 mL of each casework urine specimen into labeled 16 x 100 mm glass culture tubes.
3. Add 50 µL of the deuterated benzodiazepine internal standard (10 µg/mL) to each tube.
4. Add 1mL prepared β-glucuronidase enzyme solution in acetate buffer pH 5.0 to each sample and vortex.
5. Incubate for 3 hours at 65 °C or overnight at 37 °C. Cool before proceeding.
Solid Phase Extraction:
6. Place SPE columns into an extraction manifold. Condition SPE columns as follows:
 a. 3 mL methanol
 b. 3 mL distilled water
 c. 1 mL phosphate buffer, 100 mM, pH 6.0
7. Load samples and run through SPE columns.
8. Wash SPE columns as follows:
 a. 2 mL distilled water
 b. 2 mL 20% acetonitrile in phosphate buffer, 100 mM, pH 6.0
9. Dry SPE columns for at least 10 minutes at ≥ 20 psi.
10. Add 2 mL hexane to each column, aspirate and let dry for another 5 minutes.
11. Place labeled 16 x 100 mm screw top glass culture tubes in manifold under each SPE column and elute with 3 mL of ethyl acetate.
12. Transfer the tubes to an evaporator bath and evaporate to dryness at 40°C under a gentle stream of nitrogen.

Derivatization:
13. Add 50 μL BSTFA with 1% TMCS, 50 uL ethyl acetate and cap. Incubate at 70°C for 20 minutes.
14. Remove from heat and allow samples to cool.
15. Transfer contents to GC/MS autosampler vials/inserts, cap and transfer samples to an autosampler tray for GC/MS analysis.

GC/MS Analysis:
Instrumentation: Agilent 7890A GC and 5975C Mass Spectrometer.
Column: HP-5MS, 30 m x 0.25 mm i.d., 0.25 μm film thickness (or equivalent, i.e. DB-5)
Acquisition method: BENZO_U.M
Data analysis method: BENZO_U.M
GC parameters:
 Injector temp: 270 ºC
 Thermal Aux 2 (Transfer Line): 290 ºC
 MS Source: 230 ºC
 MS Quad: 150 ºC
 Oven program: 150 ºC for 1.0 min, 30 ºC /min to 290 ºC, hold at 290 ºC for 12 min
 Injection mode and volume: splitless, 1-3 μL
 Pressure program: constant flow 1 mL/min

MS acquisition parameters: (SIM) Use Electron Impact Detector
Analyte Quantitation ion | Qualifier ions
Nordiazepam-D₅ 347 | 346
Nordiazepam 341 | 342,327
Oxazepam-D₅ 433 | 406
Oxazepam 429 | 430, 401
Lorazepam-D₄ 434 | 433
<table>
<thead>
<tr>
<th>Substance</th>
<th>Compound Code</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorazepam</td>
<td></td>
<td>429, 430, 431</td>
</tr>
<tr>
<td>Temazepam-D₅</td>
<td>348</td>
<td>350</td>
</tr>
<tr>
<td>Temazepam</td>
<td>343</td>
<td>283, 257</td>
</tr>
<tr>
<td>α-OH-alprazolam-D₅</td>
<td>386</td>
<td>388</td>
</tr>
<tr>
<td>α-OH-alprazolam</td>
<td>381</td>
<td>396, 383</td>
</tr>
<tr>
<td>α-OH-triazolam-D₄</td>
<td>421</td>
<td>436</td>
</tr>
<tr>
<td>α-OH-triazolam</td>
<td>415</td>
<td>430, 380</td>
</tr>
</tbody>
</table>
4.2.08 Title: CONFIRMATION - 6-ACETYLMORPHINE IN URINE

Purpose and Scope: This procedure is intended to quantitatively determine 6-acetylmorphine (6-AM) in urine.

Principle: The deuterium labeled analog of 6-AM is added to each sample as an internal standard. 6-AM and the deuterated internal standard are extracted from urine. The extracted analytes are then converted to the trimethylsilyl derivatives and are quantitated by GC/MS operated in SIM mode.

Materials:
- SPE columns (UCT Clean Screen CSDAU206, or equivalent)
- 16 x 125 mm glass culture tubes*
- 16 x 100 mm screw top glass culture tubes *
- GC/MS autosampler vials, inserts, and TFE faced caps
 * Other size tubes may be used as necessary

Reagents:
Chemicals
- Distilled water
- Methanol
- Methylene chloride
- Isopropanol
- Ammonium hydroxide
- Ethyl acetate
- BSTFA with 1% TMCS

Reagent Solutions (Unless specified below, see Chapter 4.4 for preparation, QC, and storage instructions):
- Phosphate buffer, 100 mM, pH 6.0
- Acetate buffer, 100 mM, pH 4.5
- Eluting Solution - methylene chloride/isopropanol/ammonium hydroxide (78/20/2).
 Add additional ammonium hydroxide as needed to achieve the required pH (pH = 12).
 Prepare fresh daily for one time use.
 QC: Check pH with pH paper.

Drug Solutions (see Chapter 4.3 for preparation and storage instructions. See Section 6.3.1 for QC instructions):
- Drug working solution - 2 µg/mL 6-AM in acetonitrile.
- Internal standard working solution – 1 µg/mL 6-AM-D3 in acetonitrile.
Calibrators and Controls:
Calibrators are prepared in 2 mL aliquots of each of the concentrations listed below in labeled 16 x 125 mm glass culture tubes using negative urine and the specified drug working solution.

Controls are prepared in the same concentrations as calibrators. A control is run prior to case samples, after every 10 samples throughout the batch, and at the end of the run.

<table>
<thead>
<tr>
<th>Calibrator / Control</th>
<th>6-AM Final Concentration ng/mL</th>
<th>6-AM Working Solution 2 µg/mL</th>
<th>Volume Negative Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10 µL</td>
<td>1.990 mL</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20 µL</td>
<td>1.980 mL</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>50 µL</td>
<td>1.950 mL</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>100 µL</td>
<td>1.900 mL</td>
</tr>
<tr>
<td>Negative Control</td>
<td>0</td>
<td>0</td>
<td>2 mL</td>
</tr>
</tbody>
</table>

Preparation:
1. Prepare calibrators and controls as described above.
2. Pipet 2 mL of each casework urine specimen into labeled 16 x 125 mm glass culture tubes.
3. Add 25 µL of 1 µg/mL internal standard to each tube.
4. Add 1 mL of phosphate buffer, 100 mM, pH 6.0, and vortex.

Solid Phase Extraction:
5. Place SPE columns into an extraction manifold.
6. Condition SPE columns as follows:
 a. 3 mL methanol
 b. 3 mL distilled water
 c. 1 mL phosphate buffer, 100 mM, pH 6.0
7. Load samples and run through SPE columns.
8. Wash SPE columns as follows:
 a. 2 mL distilled water
 b. 2 mL acetate buffer, 100 mM, pH 4.5
 c. 3 mL methanol
9. Dry SPE columns for at least 15 minutes at ≥ 20 psi.
10. Place labeled 16x100 mm screw top glass culture tubes in manifold under each SPE column and elute with 3 mL of methylene chloride/isopropanol/ammonium hydroxide (78/20/2, pH=12).
11. Transfer the tubes to an evaporator bath and evaporate to dryness at 40 ºC under a gentle stream of nitrogen.
Derivatization:

12. Add 50 μL of ethyl acetate and 50 μL of BSTFA with 1% TMCS to each tube and cap. Incubate at ~70 °C for 20 min.
13. Remove from heat and allow the samples to cool.
14. Transfer contents to GC/MS autosampler vials/inserts, cap and transfer samples to an autosampler tray for GC/MS analysis.

GC/MS Analysis:

Instrumentation: Agilent 7890A GC and 5975C mass spectrometer.
Column: HP-5MS, 30m x 0.25 mm i.d., 0.25 μm film thickness (or equivalent, e.g., DB-5)
Acquisition method: 6-AM_ U.M
Data analysis method: 6-AM_ U.M
GC parameters:
 - Injector temp: 250 °C
 - Thermal Aux 2 (Transfer Line): 290 °C
 - MS Source: 230 °C
 - MS Quad: 150 °C
 - Oven program: 150 °C for 0.25 min, 35 °C/min to 290 °C, hold at 290 °C for 5.75 min.
 - Injection mode and volume: splitless, 1-3 μL
 - Pressure program: constant flow 1 mL/min

MS acquisition parameters (SIM): Use Electron Impact Detector

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Quantitation Ion</th>
<th>Qualifier Ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-MAM-D₃</td>
<td>402</td>
<td>290</td>
</tr>
<tr>
<td>6-MAM</td>
<td>399</td>
<td>340,287</td>
</tr>
</tbody>
</table>
4.3 Title: CONFIRMATION – DRUG SOLUTION PREPARATIONS

Note: Variations to the formulations must be approved by the Forensic Toxicology Manager, or designee. Approval is indicated on the Reagent Prep form.

Storage:
Unless otherwise noted, store all preparations in the freezer.

Expiration Date:
Expiration date is one year from date of preparation or earliest expiration/use by/retest/best before date of a component of the preparation, whichever is sooner.

Solvents:
Methanol and acetonitrile used for preparations should be GC grade or better.

Item Numbers:
Item numbers of ingredients are listed in parentheses. Unless otherwise listed they are Cerilliant item numbers.

Quality Control:
See section 6.3.1 Quality Control Checks of Drug Stock and Working Solutions for Quality Control procedures.
AMP / METH / MDA / MDMA Blood and Urine Stock and Working Solutions

Note: The LVMPD Forensic Laboratory does not distinguish enantiomers of AMP, MDA, METH, MDMA, or MPH when reporting drug confirmation results.

Calibration standard working solution level 1 – 1 µg/mL AMP, MDA, METH, MDMA, PHEN, and MPH

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 µL</td>
<td>Calibration standard working solution level 2 – 10 µg/mL AMP, MDA, METH, MDMA, PHEN, and MPH</td>
<td>1 mL Class A volumetric flask or an appropriate pipette</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol (LC grade or better)</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

Calibration standard working solution level 2 – 10 µg/mL AMP, MDA, METH, MDMA, PHEN, and MPH

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL (±)-AMP (A-007)</td>
<td>An appropriate pipette</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL (±)-MDA (M-012)</td>
<td>An appropriate pipette</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL S(+)-METH (M-020)</td>
<td>An appropriate pipette</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL (±)-MDMA (M-013)</td>
<td>An appropriate pipette</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL PHEN (P-023)</td>
<td>An appropriate pipette</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL MPH (M-083)</td>
<td>An appropriate pipette</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol (LC grade or better)</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

Control working solution level 1 – 1 µg/mL AMP, MDA, METH, MDMA, PHEN, and MPH

Prepare a 1 µg/mL AMP, MDA, METH, MDMA, PHEN, and MPH control working solution using a similar formulation as described for preparing the calibration standard working solution level 1 – 1 µg/mL AMP, MDA, METH, MDMA, PHEN, and MPH with the exception that the control materials must come from a different manufacturer than Cerilliant.

Control working solution level 2 – 10 µg/mL AMP, MDA, METH, MDMA, PHEN, and MPH

Prepare a 10 µg/mL AMP, MDA, METH, MDMA, PHEN, and MPH control working solution using a similar formulation as described for preparing the calibration standard working
solution level 2 – 10 μg/mL AMP, MDA, METH, MDMA, PHEN, and MPH with the exception that the control materials must come from a different manufacturer than Cerilliant.

100 μg/mL AMP calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL AMP Cerilliant standard (A-007)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

100 μg/mL METH calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL S(+) METH Cerilliant standard (M-020)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

100 μg/mL MDA calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL MDA Cerilliant standard (M-012)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

100 μg/mL MDMA calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL MDMA Cerilliant standard (M-013)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

10 μg/mL AMP / METH / MDA / MDMA calibration standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 μg/mL AMP calibration standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>100 μg/mL METH calibration standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>100 μg/mL MDA calibration standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
</tbody>
</table>
1 mL 100 µg/mL MDMA calibration standard stock solution 1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL

QS to 10 mL Methanol 10 mL Class A volumetric flask

10 µg/mL AMP / METH / MDA / MDMA control working solution

Prepare a 10 µg/mL AMP / METH / MDA / MDMA control working solution using a similar formulation as described for preparing the 10 µg/mL AMP / METH / MDA / MDMA calibration standard working solution, with the exception that the control material must come from a different manufacturer than Cerilliant.

1 µg/mL AMP-D_{11}, MDA-D_{12}, METH-D_{11}, MDMA-D_{15}, PHEN-D_{5}, and MPH-D_{9} - internal standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 µL</td>
<td>100 µg/mL (±)-AMP-D_{11} (A-016)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL (±)-MDA-D_{5} (M-010)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL (±)-METH-D_{11} (M-059)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL (±)-MDMA-D_{5} (M-011)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL PHEN-D_{5} (P-034)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL MPH-D_{9} (M-127)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>QS to 50 mL</td>
<td>Methanol</td>
<td>50 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

100 µg/mL AMP-D_{11} internal standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL AMP-D_{11} Cerilliant standard (A-019)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

100 µg/mL METH-D_{14} internal standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL METH-D_{14} Cerilliant standard (M-093)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
100 µg/mL MDA-D₅ internal standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL MDA-D₅ Cerilliant standard (M-027)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

100 µg/mL MDMA-D₅ internal standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL MDMA-D₅ Cerilliant standard (M-029)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

20 µg/mL AMP-D₁₁ / METH-D₁₄ / MDA-D₅ / MDMA-D₅ internal standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mL</td>
<td>100 µg/mL AMP-D₁₁ internal standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette(s) suitable for measuring 2 mL</td>
</tr>
<tr>
<td>2 mL</td>
<td>100 µg/mL METH-D₁₄ internal standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette(s) suitable for measuring 2 mL</td>
</tr>
<tr>
<td>2 mL</td>
<td>100 µg/mL MDA-D₅ internal standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette(s) suitable for measuring 2 mL</td>
</tr>
<tr>
<td>2 mL</td>
<td>100 µg/mL MDMA-D₅ internal standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette(s) suitable for measuring 2 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
COC / CE / BZE Blood and Urine Stock and Working Solutions

Calibration standard working solution level 1 – 1 µg/mL COC/CE and 5 µg/mL BZE

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>Calibration standard working solution level 2 – 10 µg/mL COC/CE and 50 µg/mL BZE</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Acetonitrile ((LC) grade or better)</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

Calibration standard working solution level 2 – 10 µg/mL COC/CE and 50 µg/mL BZE

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL COC (C-008)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL CE (C-010)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>1.0 mg/mL BZE (B-004)</td>
<td>Pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Acetonitrile ((LC) grade or better)</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

Control working solution level 1 – 1 µg/mL COC/CE and 5 µg/mL BZE

Prepare a 1 µg/mL COC/CE and 5 µg/mL BZE control working solution using a similar formulation as described for preparing the calibration standard working solution level 1 – 1 µg/mL COC/CE and 5 µg/mL BZE with the exception that the control materials must come from a different manufacturer than Cerilliant.

Control working solution level 2 – 10 µg/mL COC/CE and 50 µg/mL BZE

Prepare a 10 µg/mL COC/CE and 50 µg/mL BZE control working solution using a similar formulation as described for preparing the calibration standard working solution level 2 – 10 µg/mL COC/CE and 50 µg/mL BZE with the exception that the control materials must come from a different manufacturer than Cerilliant.

Internal standard working solution – 2 µg/mL COC-D_3\slash CE-D_3 and 10 µg/mL BZE-D_3

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 µL</td>
<td>100 µg/mL COC-D3 (C-004)</td>
<td>Pipette suitable for measuring 200 µL</td>
</tr>
<tr>
<td>200 µL</td>
<td>100 µg/mL CE-D3 (C-009)</td>
<td>Pipette suitable for measuring 200 µL</td>
</tr>
<tr>
<td>1 mL</td>
<td>100 µg/mL BZE-D3 (B-001)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Acetonitrile ((LC) grade or better)</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
100 µg/mL COC calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1 mL of a 1.0 mg/mL COC Cerilliant standard (C-008))</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Acetonitrile</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

100 µg/mL BZE calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL BZE Cerilliant standard (B-004)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

10 µg/mL COC / BZE calibration standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL COC calibration standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>100 µg/mL BZE calibration standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

10 µg/mL COC / BZE control working solution

Prepare a 10 µg/mL COC / BZE control working solution using a similar formulation as described for preparing the 10 µg/mL COC / BZE calibration standard working solution, with the exception that the control material must come from a different manufacturer than Cerilliant.

10 µg/mL COC-D3 / BZE-D3 internal standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL COC-D₃ Cerilliant standard (C-004)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>100 µg/mL BZE-D₃ Cerilliant standard (B-001)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
THC / THCA Blood and Urine Stock and Working Solutions (silanized amber vials must be used)

Note: (-)-11-nor-9-Carboxy-Δ^9^-Tetrahydrocannabinol (Cerilliant standard T-018) is used because it is also suitable for immunoassay. The LVMPD Forensic Laboratory does not distinguish between +/- THCA when reporting drug confirmation results.

100 µg/mL THC calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL (-)-Δ9-THC Cerilliant standard (T-005)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

10 µg/mL THC calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL THC calibration standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

10 µg/mL 11-OH-THC calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL (±)-11-OH-Δ9-THC Cerilliant standard (H-026)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol (GC grade or better)</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

10 µg/mL THCA calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL (-)-11-nor-9-Carboxy-Δ9-THC Cerilliant standard (T-018)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
1.5 µg/mL THCA calibration standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 mL</td>
<td>10 µg/mL (-)-11-nor-9-Carboxy-Δ9-THC Cerilliant standard (T-018)</td>
<td>Pipette(s) suitable for measuring 1.5 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

1.5 µg/mL THCA control working solution

Prepare a 1.5 µg/mL THCA control working solution using a similar formulation as described for preparing the 1.5 µg/mL THCA calibration standard working solution, with the exception that the control material must come from a different manufacturer than Cerilliant. A 100 µg/mL control stock solution is required if the material comes in a 1.0 mg/mL THCA concentration.

0.1 µg/mL THC, 11-OH-THC / 0.5 µg/mL THCA calibration standard working solution – Level 1

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1 µg/mL THC, 11-OH-THC / 5 µg/mL THCA calibration standard working solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

1 µg/mL THC, 11-OH-THC / 5 µg/mL THCA calibration standard working solution – Level 2

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>10 µg/mL THC standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>10 µg/mL 11-OH-THC standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL (-)-11-nor-9-Carboxy-Δ9-THC Cerilliant standard (T-018)</td>
<td>Pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

0.1 µg/mL THC, 11-OH-THC / 0.5 µg/mL THCA control working solution – Level 1

Prepare a 0.1 µg/mL THC, 11-OH-THC / 0.5 µg/mL THCA control working solution using a similar formulation as described for preparing the 0.1 µg/mL THC, 11-OH-THC / 0.5 µg/mL THCA calibration standard working solution, with the exception that the control material must come from a different manufacturer than Cerilliant.
1 µg/mL THC, 11-OH-THC / 5 µg/mL THCA control working solution – Level 2
Prepare a 1 µg/mL THC, 11-OH-THC / 5 µg/mL THCA control working solution using a similar formulation as described for preparing the 1 µg/mL THC, 11-OH-THC / 5 µg/mL THCA calibration standard working solution, with the exception that the control material must come from a different manufacturer than Cerilliant.

10 µg/mL THC-D$_3$ internal standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL (-)-Δ9-THC-D$_3$ Cerilliant standard (T-003)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

10 µg/mL 11-OH-THC-D$_3$ internal standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL 11-OH-Δ9-THC-D$_3$ Cerilliant standard (H-041)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

10 µg/mL THCA-D$_3$ internal standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL (±)-11-nor-9-Carboxy-Δ9-THC-D$_3$ Cerilliant standard (T-004)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

1 µg/mL THCA-D$_3$ internal standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>10 µg/mL THCA-D$_3$ internal standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
0.1 µg/mL THC-D$_3$, 11-OH-THC-D$_3$ / 0.5 µg/mL THCA-D$_3$ internal standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 µL</td>
<td>10 µg/mL THC-D$_3$ internal standard stock solution</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>10 µg/mL 11-OH-THC-D$_3$ internal standard stock solution</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>2.5 mL</td>
<td>10 µg/mL THCA-D$_3$ internal standard stock solution</td>
<td>A pipette suitable for measuring 2.5 mL</td>
</tr>
<tr>
<td>QS to 50 mL</td>
<td>Methanol</td>
<td>50 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

10 µg/mL THCA Glucuronide control stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL THCA Glucuronide Cerilliant standard (T-038)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

1 µg/mL THCA Glucuronide control working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>10 µg/mL THCA Glucuronide control stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
Narcotic Analgesic Blood Stock and Working Solutions

Narcotic Analgesics Standard Working Solution Level 2: 0.2 µg/mL FEN; 2 µg/mL OXM, HYM, 6-AM; 10 µg/mL MOR, COD, OXC, HYC, TRM, ODT, MTD

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 µL</td>
<td>100 µg/mL FEN Cerilliant standard (F-002-1ML)</td>
<td>Pipette suitable for measuring 20 µL</td>
</tr>
<tr>
<td>20 µL</td>
<td>1.0 mg/mL OXM Cerilliant standard (O-004-1ML)</td>
<td>Pipette suitable for measuring 20 µL</td>
</tr>
<tr>
<td>20 µL</td>
<td>1.0 mg/mL HYM Cerilliant standard (H-004-1ML)</td>
<td>Pipette suitable for measuring 20 µL</td>
</tr>
<tr>
<td>20 µL</td>
<td>1.0 mg/mL 6-AM Cerilliant standard (A-009-1ML)</td>
<td>Pipette suitable for measuring 20 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL MOR Cerilliant standard (M-005-1ML)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL COD Cerilliant standard (C-006-1ML)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL OXC Cerilliant standard (O-002-1ML)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL HYC Cerilliant standard (H-003-1ML)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL cis-TRM Cerilliant standard (T-027-1ML)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL ODT Cerilliant standard (T-035-1ML)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1.0 mg/mL (±)-MTD Cerilliant standard (M-007-1ML)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol (GC grade or better)</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
Narcotic Analgesics Standard Working Solution Level 1: 0.02 µg/mL FEN; 0.2 µg/mL OXM, HYM, 6-AM; 1 µg/mL MOR, COD, OXC, HYC, TRM, ODT, MTD

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 µL</td>
<td>Narcotic Analgesics Standard Working Solution Level 2</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol (GC grade or better)</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

Narcotic Analgesics Control Working Solution Level 2: 0.2 µg/mL FEN; 2 µg/mL OXM, HYM, 6-AM; 10 µg/mL MOR, COD, OXC, HYC, TRM, ODT, MTD

Prepare a Narcotic Analgesics control working solution using a similar formulation as described for preparing the Narcotic Analgesics Standard Working Solution Level 2, with the exception that the control material must come from a different manufacturer than Cerilliant.

Narcotic Analgesics Control Working Solution Level 1: 0.02 µg/mL FEN; 0.2 µg/mL OXM, HYM, 6-AM; 1 µg/mL MOR, COD, OXC, HYC, TRM, ODT, MTD

Prepare a Narcotic Analgesics control working solution using a similar formulation as described for preparing the Narcotic Analgesics Standard Working Solution Level 1, with the exception that the control material must come from a different manufacturer than Cerilliant.

10 µg/mL FEN-D₅ internal standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL Fentanyl-D₅ Cerilliant standard (F-001)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol (GC grade or better)</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

Narcotic Analgesics internal standard working solution: 0.02 µg/mL FEN-D₅; 0.2 µg/mL OXM-D₃, HYM-D₆, 6-AM-D₆; 1 µg/mL MOR-D₆, COD-D₆, OXC-D₆, HYC-D₆, TRM-D₃, ODT-D₆, MTD-D₃

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 µL</td>
<td>10 µg/mL FEN-D₅ internal standard stock solution</td>
<td>Pipette suitable for measuring 20 µL</td>
</tr>
<tr>
<td>20 µL</td>
<td>100 µg/mL OXM-D₃ Cerilliant standard (O-003-1ML)</td>
<td>Pipette suitable for measuring 20 µL</td>
</tr>
<tr>
<td>20 µL</td>
<td>100 µg/mL HYM-D₆ Cerilliant standard (H-049-1ML)</td>
<td>Pipette suitable for measuring 20 µL</td>
</tr>
<tr>
<td>Volume (µL)</td>
<td>Concentration (µg/mL)</td>
<td>Compound</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>6-AM-D<sub>6</sub></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>MOR-D<sub>6</sub></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>COD-D<sub>6</sub></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>OXC-D<sub>6</sub></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>HYC-D<sub>6</sub></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>cis-TRM<sup>13</sup>C<sub>3</sub>-D<sub>3</sub></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>ODT-D<sub>6</sub></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>(±)-MTD-D<sub>3</sub></td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>GC grade or better</td>
</tr>
</tbody>
</table>
Codeine / Morphine Blood (Screen) and Urine Stock and Working Solutions

100 µg/mL Morphine calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL Morphine Cerilliant standard (M-005)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

50 µg/mL Codeine / Morphine calibration standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 µL</td>
<td>1.0 mg/mL Codeine Cerilliant standard (C-006)</td>
<td>Pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>1.0 mg/mL Morphine Cerilliant standard (M-005)</td>
<td>Pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

50 µg/mL Codeine / Morphine control working solution

Prepare a 50 µg/mL Codeine / Morphine control working solution using a similar formulation as described for preparing the 50 µg/mL Codeine / Morphine calibration standard working solution, with the exception that the control material must come from a different manufacturer than Cerilliant.

20 µg/mL Codeine-D₃ / Morphine-D₃ internal standard stock/working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL Codeine-D₃ Cerilliant standard (C-005)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>100 µg/mL Morphine-D₃ Cerilliant standard (M-003)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 5 mL</td>
<td>Methanol</td>
<td>5 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

3240 ng/mL Morphine-3β-D-Glucuronide control working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>324 µL</td>
<td>1 mg/mL Morphine-3β-D-Glucuronide Cerilliant standard (M-031)</td>
<td>Pipette suitable for measuring 324 µL</td>
</tr>
<tr>
<td>QS to 100 mL</td>
<td>Negative urine</td>
<td>100 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
Hydrocodone Urine Stock and Working Solutions

100 µg/mL Hydrocodone calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1 mg/mL Hydrocodone Cerilliant standard (H-003)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol (GC grade or better)</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

5 µg/mL Hydrocodone calibration standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 µL</td>
<td>100 µg/mL Hydrocodone calibration standard stock solution</td>
<td>Pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

5 µg/mL Hydrocodone control working solution

Prepare a 5 µg/mL Hydrocodone control working solution using a similar formulation as described for preparing the 5 µg/mL Hydrocodone calibration standard working solution, with the exception that the control material must come from a different manufacturer than Cerilliant.

2 µg/mL Hydrocodone-D₃ internal standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL Hydrocodone-D₃ Cerilliant standard (H-005)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 50 mL</td>
<td>Methanol</td>
<td>50 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
Phencyclidine Blood and Urine Stock and Working Solutions

100 µg/mL PCP Cerilliant calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL PCP Cerilliant standard (P-007)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

10 µg/mL PCP Cerilliant calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL PCP Cerilliant calibration standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

1 µg/mL PCP Cerilliant calibration standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>10 µg/mL PCP Cerilliant calibration standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

1 µg/mL PCP control working solution
Prepare a 1 µg/mL PCP control working solution using the same formulation described for preparing the 1 µg/mL PCP Cerilliant calibration standard working solution, with the exception that the control material must originate from a different manufacturer than Cerilliant.

10 µg/mL PCP-D₅ Cerilliant internal standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL PCP-D₅ Cerilliant standard (P-003)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
2 µg/mL PCP-D₅ Cerilliant internal standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mL</td>
<td>10 µg/mL PCP-D₅ Cerilliant internal standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette(s) suitable for measuring 2 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
Benzodiazepine/Z-Drug Blood Working Solutions

Level 2: 5 µg/mL Flunitrazepam /10 µg/mL 7-Aminoclonazepam, Zopiclone, Zolpidem, Zaleplon, Oxazepam, Nordiazepam, Clonazepam, Lorazepam, Alprazolam, Temazepam, and Diazepam calibration standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 µL</td>
<td>1 mg/mL Flunitrazepam (F-907)</td>
<td>Pipette suitable for measuring 50 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1 mg/mL 7-Aminoclonazepam (A-916)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1 mg/mL Zopiclone (Z-003)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1 mg/mL Zolpidem (Z-017)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1 mg/mL Zaleplon (Z-004)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1 mg/mL Oxazepam (O-902)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1 mg/mL Nordiazepam (N-905)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1 mg/mL Clonazepam (C-907)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1 mg/mL Lorazepam (L-901)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1 mg/mL Alprazolam (A-903)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1 mg/mL Temazepam (T-907)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>100 µL</td>
<td>1 mg/mL Diazepam (D-907)</td>
<td>Pipette suitable for measuring 100 µL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

Level 1: 0.5 µg/mL Flunitrazepam /1 µg/mL 7-Aminoclonazepam, Zopiclone, Zolpidem, Zaleplon, Oxazepam, Nordiazepam, Clonazepam, Lorazepam, Alprazolam, Temazepam, and Diazepam calibration standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>Level 2 working solution</td>
<td>1 mL Class A Volumetric flasks or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

Levels 1 & 2 Flunitrazepam / 7-Aminoclonazepam, Zopiclone, Zolpidem, Zaleplon, Oxazepam, Nordiazepam, Clonazepam, Lorazepam, Alprazolam, Temazepam, and Diazepam control working solutions
Prepare the control working solutions using a similar formulation as the one described for preparing the calibration standard working solutions, with the exception that the control material must originate from a different manufacturer than the Certified Reference Material used to prepare the calibration standard working solution.

0.5 µg/mL Flunitrazepam-D₇ / 1 µg/mL 7-Aminoclonazepam-D₄, Zopiclone-D₄, Zolpidem-D₆, Zaleplon-D₄, Oxazepam-D₅, Nordiazepam-D₅, Clonazepam-D₄, Lorazepam-D₄, Alprazolam-D₅, Temazepam-D₅, and Diazepam-D₅ internal standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 µL</td>
<td>100 µg/mL Flunitrazepam-D<sub>7</sub> (F-915)</td>
<td>A pipette suitable for measuring 250 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL 7-Aminoclonazepam-D<sub>4</sub> (A-917)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL Zopiclone-D<sub>4</sub> (Z-902)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL Zolpidem-D<sub>6</sub> (Z-001)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL Zaleplon-D<sub>4</sub> (Z-010)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL Oxazepam-D<sub>5</sub> (O-901)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL Nordiazepam-D<sub>5</sub> (N-903)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL Clonazepam-D<sub>4</sub> (C-905)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL Lorazepam-D<sub>4</sub> (L-902)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL Alprazolam-D<sub>5</sub> (A-902)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL Temazepam-D<sub>5</sub> (T-902)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>500 µL</td>
<td>100 µg/mL Diazepam-D<sub>5</sub> (D-902)</td>
<td>A pipette suitable for measuring 500 µL</td>
</tr>
<tr>
<td>QS to 50 mL</td>
<td>Methanol</td>
<td>50 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
Benzodiazepine Blood and Urine Stock and Working Solutions

100 µg/mL Nordiazepam calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL Nordiazepam Cerilliant standard (N-905)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

100 µg/mL Oxazepam calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL Oxazepam Cerilliant standard (O-902)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

100 µg/mL Lorazepam calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL Lorazepam Cerilliant standard (L-901)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Acetonitrile</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

100 µg/mL Temazepam calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL Temazepam Cerilliant standard (T-907)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

10 µg/mL Nordiazepam / Oxazepam / Lorazepam / Temazepam / α-Hydroxyalprazolam / α-Hydroxytriazolam calibration standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL Nordiazepam calibration standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>100 µg/mL Oxazepam calibration standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
</tbody>
</table>
1 mL | 100 µg/mL Lorazepam calibration standard stock solution | 1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL
---|---|---
1 mL | 100 µg/mL Temazepam calibration standard stock solution | 1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL
1 mL | 100 µg/mL α-Hydroxyalprazolam Cerilliant standard (A-905) | 1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL
1 mL | 100 µg/mL α-Hydroxytriazolam Cerilliant standard (T-915) | 1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL
QS to 10 mL | Methanol | 10 mL Class A volumetric flask

10 µg/mL Nordiazepam / Oxazepam / Lorazepam / Temazepam / α-Hydroxyalprazolam / α-Hydroxytriazolam control working solution

Prepare a 10 µg/mL Nordiazepam / Oxazepam / Lorazepam / Temazepam / α-Hydroxyalprazolam / α-Hydroxytriazolam control working solution using a similar formulation as the one described for preparing the 10 µg/mL Nordiazepam / Oxazepam / Lorazepam / Temazepam / α-Hydroxyalprazolam / α-Hydroxytriazolam calibration standard working solution, with the exception that the control material must originate from a different manufacturer than Cerilliant.

10 µg/mL Nordiazepam-D₅ / Oxazepam-D₅ / Lorazepam-D₄ / Temazepam-D₅ / α-Hydroxyalprazolam-D₅ / α-Hydroxytriazolam-D₄ internal standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL Nordiazepam-D₅ Cerilliant standard (N-903)</td>
<td>1 mL Class A micro volumetric flask pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>100 µg/mL Oxazepam-D₅ Cerilliant standard (O-901)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>100 µg/mL Lorazepam-D₄ Cerilliant standard (L-902)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>100 µg/mL Temazepam-D₅ Cerilliant standard (T-902)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>100 µg/mL α-Hydroxyalprazolam-D₅ Cerilliant standard (A-904)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>100 µg/mL α-Hydroxytriazolam-D₄ Cerilliant standard (T-909)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
10 µg/mL Oxazepam Glucuronide control working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL Oxazepam Glucuronide Cerilliant standard (O-023)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Distilled water</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
Carisoprodol / Meprobamate Blood Stock and Working Solutions

100 µg/mL Carisoprodol / Meprobamate calibration standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL Carisoprodol Cerilliant standard (C-077)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL Meprobamate Cerilliant standard (M-039)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

100 µg/mL Carisoprodol / Meprobamate control working solution

Prepare a 100 µg/mL Carisoprodol / Meprobamate control working solution using a similar formulation described for preparing the 100 µg/mL Carisoprodol / Meprobamate calibration standard working solution, with the exception that the control material must originate from a different manufacturer than Cerilliant.

20 µg/mL Carisoprodol-D7 / Meprobamate-D7 internal standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mL</td>
<td>100 µg/mL Carisoprodol-D7 Cerilliant standard (C-083)</td>
<td>1 mL Class A micro volumetric flask or pipette(s) suitable for measuring 2 mL</td>
</tr>
<tr>
<td>2 mL</td>
<td>100 µg/mL Meprobamate-D7 Cerilliant standard (M-131)</td>
<td>1 mL Class A micro volumetric flask or pipette(2) suitable for measuring 2 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Methanol</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
6-Acetylmorphine Urine Stock and Working Solutions

100 µg/mL 6-Acetylmorphine calibration standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1.0 mg/mL 6-Acetylmorphine Cerilliant standard (A-009)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Acetonitrile</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

100 µg/mL 6-Acetylmorphine control stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>1 mg/mL 6-MAM (Cayman certified reference material (19418))</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Acetonitrile (GC grade or better)</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

2 µg/mL 6-Acetylmorphine calibration standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 µL</td>
<td>100 µg/mL 6-Acetylmorphine calibration standard stock solution</td>
<td>Pipette suitable for measuring 200 µL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Acetonitrile</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>

2 µg/mL 6-Acetylmorphine control working solution

Prepare a 2 µg/mL 6-Acetylmorphine control working solution using a similar formulation as described for preparing the 2 µg/mL 6-Acetylmorphine calibration standard working solution, with the exception that the control material must come from a different manufacturer than Cerilliant.

10 µg/mL 6-Acetylmorphine-D₃ internal standard stock solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>100 µg/mL 6-Acetylmorphine-D₃ Cerilliant standard (A-006)</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Acetonitrile</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
1 µg/mL 6-Acetylmorphine-D₃ internal standard working solution

<table>
<thead>
<tr>
<th>Amount</th>
<th>Ingredients</th>
<th>Measuring Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mL</td>
<td>10 µg/mL 6-Acetylmorphine-D₃ internal standard stock solution</td>
<td>1 mL Class A micro volumetric flask or pipette suitable for measuring 1 mL</td>
</tr>
<tr>
<td>QS to 10 mL</td>
<td>Acetonitrile</td>
<td>10 mL Class A volumetric flask</td>
</tr>
</tbody>
</table>
4.4 Title: CONFIRMATION – REAGENT PREPARATIONS

Note: If alternate final volumes are desired, then weights and volumes may be revised providing the proportions are maintained. Variations to the formulations, with the exception of 1% acidic methanol and β-glucuronidase enzyme solution in 100 mM acetate buffer pH 5.0 (5,000 units/mL), must be verified by another Forensic Scientist, Toxicology Supervisor, or Toxicology Manager. Verification is indicated on the Reagent Prep Log form in the "approved by" box.

Note: Depending on the weighing capacity of the analytical balance, additional decimal places may be recorded when weighing chemicals. The analyst should attempt to match the recipe weight as closely as possible without being under weight.

ACIDIC SOLUTIONS

Acetic acid, 1.0 M
- Add 5.76 mL of glacial acetic acid to distilled water and dilute to 100 mL.
- QC: Check pH with pH paper. pH should be less than 7.
- Storage: Room temperature in glass container.
- Stability: 6 months.

Acetic acid, 100 mM
- Dilute 50 mL 1.0 M acetic acid to 500 mL with distilled water.
- QC: Check pH with pH paper. pH should be less than 7.
- Storage: Room temperature in glass container.
- Stability: 6 months.

Acidic methanol, 1%
- Pipette 100 μL concentrated hydrochloric acid into a 10 mL volumetric flask and bring to volume with methanol.
- Prepare fresh daily for one time use.
- QC: Concurrently with use. All drug confirmation Batch Acceptance Criteria must be met for passing QC.

Hydrochloric acid, 100 mM
- Add 2.1 mL of concentrated hydrochloric acid to distilled water and dilute to 250 mL.
- QC: Check pH with pH paper. pH should be less than 7.
- Storage: Room temperature in glass or plastic container.
Stability: 6 months.

0.2% (v/v) Hydrochloric Acid in 2-Propanol

- To a 250 mL volumetric flask, add:
 - 500 µL concentrated hydrochloric acid, ACS grade or higher
 - Quantity sufficient to 250 mL with 2-propanol, LC grade or higher
- Swirl to mix.
- QC: Concurrently with use. All drug confirmation [Batch Acceptance Criteria](#) must be met for passing QC.
- Storage: Room temperature in glass container
- Stability: 6 months
BASIC SOLUTIONS

Sodium hydroxide 10 N
- Slowly dissolve 24 g of NaOH in 50 mL of distilled water.
 CAUTION – EXOTHERMIC REACTION!
- Allow to cool and dilute to 60 mL.
- QC: Check pH with pH paper. pH should be greater than 7.
- Storage: Room temperature in plastic container.
- Stability: 6 months.

Sodium hydroxide 1 N
- Dilute 10 mL of 10 N sodium hydroxide to 100 mL with distilled water.
- QC: Check pH with pH paper. pH should be greater than 7.
- Storage: Room temperature in plastic container.
- Stability: 6 months

0.2 M Sodium Phosphate, Tribasic
- To a 2000 mL beaker, add:
 - 1000 mL distilled water
 - 32.79 g sodium phosphate, tribasic, ACS grade or higher
- Mix using a stir bar and a stir plate.
- QC: Check pH with pH paper. pH should be basic.
- Storage: Room temperature in glass container
- Stability: 1 year
BUFFER SOLUTIONS

Acetate buffer, 100 mM, pH 4.5
- Dissolve 5.86 g of sodium acetate trihydrate in 975 mL of distilled water. Add 3.24 mL of glacial acetic acid. Dilute to 1 liter with distilled water. Adjust pH to 4.5 ± 0.1 with 1 M acetic acid or 1 N NaOH.
- QC: Check pH with pH paper.
- Storage: Refrigerate in glass container.
- Stability: 6 months. Inspect for contamination before use.

Acetate buffer, 100 mM, pH 5.0
- Dissolve 2.145 g sodium acetate trihydrate in ~230 mL distilled water. Add 0.52 mL glacial acetic acid. Dilute to 250 mL. Adjust pH to 5.0 ± 0.1 with 1M acetic acid or 1 N NaOH.
- QC: Check pH with pH paper.
- Storage: Room temperature in glass or plastic container.
- Stability: 6 months. Inspect for contamination before use.

Carbonate buffer
- Dissolve 2 g potassium bicarbonate (KHCO\(_3\)) and 1 g potassium carbonate – 1.5 Hydrate (K\(_2\)CO\(_3\) - 1.5H\(_2\)O) in 75 mL of distilled water. Dilute to 100 mL.
- Prepare fresh daily for one time use.
- QC: Concurrently with use. All drug confirmation Batch Acceptance Criteria must be met for passing QC.

Phosphate buffer, 100 mM, pH 6.0
- Dissolve 1.70 g sodium phosphate dibasic and 12.14 g sodium phosphate monobasic in distilled water and dilute to 1 liter. Adjust pH to 6.0 +/- 0.1.
- QC: Check pH with pH paper.
- Storage: Refrigerate in glass container.
- Stability: 1 month. Inspect for contamination before use.

Sodium Borate Buffer, Saturated
- Dissolve 45 g sodium borate in 750 mL H\(_2\)O while stirring with minimal heat on a hotplate. Cool completely before placing in storage jar.
- QC: Concurrently with use. All drug confirmation Batch Acceptance Criteria must be met for passing QC.
- Storage: Room temperature in glass container
- Stability: 6 months.
ENZYME SOLUTION

β-glucuronidase enzyme solution in 100 mM acetate buffer pH 5.0 (5,000 units/mL)

- Prepare fresh daily for one time use.
- QC: Concurrently with batch. All drug confirmation Batch Acceptance Criteria must be met for passing QC.
- If the enzyme activity is listed as greater than or equal, the lowest enzyme activity will be used for the calculation in order to achieve the final enzyme activity of 5000 units/mL.
- Use the following formula to determine the volume of β-glucuronidase enzyme needed:

\[
\text{Volume of glucuronidase} = \frac{5000 \text{ units/mL} \times \text{Volume of solution}}{\text{Enzyme activity of glucuronidase}}
\]

- Example: If 20 mL of β-glucuronidase enzyme solution in 100 mM acetate buffer pH 5.0 is needed to be made from β-glucuronidase enzyme with enzyme activity of greater than or equal to 100000 units/mL, the volume of glucuronidase enzyme is determined as follows.

\[
\text{Volume of glucuronidase} = \frac{5000 \text{ units/mL} \times 20 \text{ mL}}{100000 \text{ units/mL}} = 1 \text{ mL} \text{ or } 1000 \mu\text{L}
\]
LC/MS/MS REAGENTS

50/50 Water/Methanol (Source Clean)
- Prepare a 50/50 mixture of LCMS Grade Water/LCMS Grade Methanol in a LCMS glass reagent bottle (e.g., using a LCMS glass reagent bottle for measuring, combine 200 mL of LCMS Grade Water and 200 mL of LCMS Grade Methanol into the LCMS reagent bottle). Swirl to mix.
- QC: Not applicable. Reagent is used as a wash solution only.
- Storage: Room temperature in LCMS glass reagent bottle.

1:1:1:1 Methanol:Water:Acetonitrile:2-Propanol
- For example:
 - To a 1000-mL LC reagent bottle, add:
 - 200 mL methanol, LC grade
 - 200 mL water, LC grade
 - 200 mL acetonitrile, LC grade
 - 200 mL 2-propanol, LC grade
- Swirl to mix.
- QC: Not applicable. Reagent is used as a wash solution only.
- Storage: Room temperature in glass container.

5 M Ammonium Acetate Stock Solution
- Using a 20 mL Class A volumetric flask, dissolve 7.708 g of LCMS Grade Ammonium Acetate in 20 mL of LCMS Grade Water. Mix.
- Calculation:
 \[
 \frac{5 \text{ mole Ammonium Acetate}}{L} \times \frac{7.708 \text{ g Ammonium Acetate}}{\text{mole Ammonium Acetate}} \times \frac{0.020 \text{ L}}{\text{mole Ammonium Acetate}} = 7.708 \text{ g Ammonium Acetate}
 \]
- QC: Concurrently with batch. All drug confirmation Batch Acceptance Criteria must be met for passing QC.
- Storage: Refrigerate in amber glass bottle(s).

5 mM Ammonium Acetate in Water (Mobile Phase)
- Prepare a 5 mM Ammonium Acetate in Water Solution into a LCMS amber glass reagent bottle (e.g., using a LCMS amber glass reagent bottle for measuring, add 500 mL of LCMS Grade Water to the LCMS amber glass reagent bottle; pipette 500 µL of a 5 M Ammonium Acetate Stock Solution to the water). Swirl to mix.
- QC: Concurrently with batch. All drug confirmation Batch Acceptance Criteria must be met for passing QC.
- Storage: Room temperature in LCMS amber glass reagent bottle.

0.1% Formic Acid in Water (Mobile Phase)*
*This may be purchased or prepared in-house.
- To a 1000-mL LC reagent bottle, add:
 - 1 mL formic acid, LCMS grade
 - 1000 mL water, LCMS grade
- Swirl to mix.
- QC: Concurrently with batch. All drug confirmation [Batch Acceptance Criteria](#) must be met for passing QC.
- Storage: Room temperature in glass container.

0.1% Formic Acid in Acetonitrile (Mobile Phase)*
*This may be purchased or prepared in-house.
- To a 1000-mL LC reagent bottle, add:
 - 1 mL formic acid, LCMS grade
 - 1000 mL acetonitrile, LCMS grade
- Swirl to mix.
- QC: Concurrently with batch. All drug confirmation [Batch Acceptance Criteria](#) must be met for passing QC.
- Storage: Room temperature in glass container.

5 M Ammonium Formate
- Using an analytical balance, measure 6.30 g of ammonium formate. Add to water in 20 mL class A volumetric flask, bringing final volume to 20 mL.
- QC: Concurrently with batch. All drug confirmation [Batch Acceptance Criteria](#) must be met for passing QC.
- Storage: Refrigerator in amber glass reagent vial.

Methanol with 5 mM Ammonium Formate and 0.1% Formic Acid (Mobile Phase B)
- Prepare a 5 mM ammonium formate and 0.1% formic acid in a methanol solution in an LC/MS amber glass reagent bottle (e.g., using an Eppendorf Repeater pipette, add 1000 µL of 5 M ammonium formate and 1000 µL of formic acid to an LC/MS amber glass reagent bottle, GC/MS grade water to the 1000 mL mark of to the LC/MS amber glass reagent bottle). Swirl to mix.
- Alternatively can purchase premixed 0.1% Formic Acid in Methanol.
- QC: Concurrently with batch. All drug confirmation [Batch Acceptance Criteria](#) must be met for passing QC.
- Storage: Room temperature in LC/MS amber glass reagent bottle.

Water with 5 mM Ammonium Formate and 0.01% Formic Acid (Mobile Phase A)
- Prepare a 5 mM ammonium formate and 0.01% formic acid in a water solution in an LC/MS amber glass reagent bottle (e.g., using an Eppendorf Repeater pipette, add 1000 µL of 5 M ammonium formate and 100 µL of formic acid to an LC/MS
amber glass reagent bottle, add LC/MS grade water to the 1000 mL mark of to the LC/MS amber glass reagent bottle). Swirl to mix.

- **QC:** Concurrently with batch. All drug confirmation Batch Acceptance Criteria must be met for passing QC.
- **Storage:** Room temperature in LC/MS amber glass reagent bottle.

- Using an LC/MS amber glass reagent bottle for measuring, add 800 mL acetonitrile (LC/MS grade), 100 mL isopropanol (LC/MS grade) and 100 mL methanol (LC grade) to the LC/MS reagent bottle. Swirl to mix.
- **QC:** N/A
- **Storage:** Room temperature in LC/MS amber glass reagent bottle.

2% Formic Acid

*This may be purchased or prepared in-house.

- Prepare a 2% formic acid in water solution in a 1000 mL class A volumetric flask (e.g., measure 20 mL of formic acid (LC/MS grade) using a 25 mL class A graduated cylinder, add to a 1000 mL class A volumetric flask and add water (distilled or higher grade) at a quantity sufficient to 1000 mL). Plug flask and invert to mix.
- **QC:** Concurrently with batch. All drug confirmation Batch Acceptance Criteria must be met for passing QC.
- **Storage:** Room temperature in LC/MS amber glass reagent bottle.
- **Note:** Commercially prepared reagent may be used in place of this recipe.

75:25 Methanol:Water

- To a 1000 mL LC reagent bottle, add:
 - 750 mL methanol, LC grade or higher
 - 250 mL water, LC grade or higher
- Swirl to mix.
- **QC:** N/A
- **Storage:** Room temperature in glass container

(90:10) Water:Isopropanol (Seal Pump Wash)

- Using an LC/MS glass reagent bottle for measuring, add 900 mL water (LC/MS grade) and 100 mL water (LC/MS grade). Swirl to mix.
- **QC:** N/A
- **Storage:** Room temperature in LC/MS glass reagent bottle.
5.0 Title: ETHANOL ANALYSIS BY DUAL COLUMN GC HEADSPACE

Purpose and Scope

The purpose of this procedure is to determine the quantitative amount of ethanol (ethyl alcohol) in whole blood and urine.

Principle

The method relies on the principle described by Henry's Law which states that at a constant temperature, the volatile components in a solution will enter into a state of equilibrium between the liquid and vapor phases. Duplicate aliquots of blood and internal standard are thermally equilibrated and the resulting vapor is sampled and transferred onto two capillary columns contained within the gas chromatograph. The capillary columns separate the volatiles and the volatiles pass individually through the flame-ionization detectors (FIDs). Quantification of ethanol is achieved by the comparison of the ratio of detector response of ethanol in each sample to that of the internal standard, with the resulting ratio being compared to the standard curve.

Instrumentation

The instrumentation used for the analysis is a Perkin Elmer TurboMatrix HS110 with Clarus 500 or Clarus 580 model gas chromatograph operated as a dual column instrument with flame-ionization detectors and a headspace sample inlet. An Elite-BAC-1 Advantage fused silica column (30m, ID 0.32 mm, DF 1.8 – Perkin Elmer Cat. # N9315071, or equivalent) and an Elite-BAC-2 Advantage fused silica column (30m, ID 0.32 mm, DF 0.6 – Perkin Elmer Cat. # N9315073, or equivalent) are used. A copy of the instrument parameters is located within the method validation documentation.

Method Validation

The ethanol analysis by GC Headspace method was subject to a validation procedure following Scientific Working Group of Forensic Toxicology (SWGTOX) standard practices. Method validation documentation is kept in Qualtrax. Substantial changes in the analysis will require a re-validation of the method.

Materials

- Headspace vials (20mm, 22mL, crimp top or equivalent)
- Crimp seals (20mm PTFE/Rubber or equivalent)
- Vial seal crimper
Diluter/Dispenser (Hamilton 500 or 600 series or equivalent)
Absorbent wipes

Reagents (unless otherwise noted, store per manufacturers’ requirements)
- Certified aqueous ethanol standards (10 mg/dL, 20 mg/dL, 80 mg/dL, 200 mg/dL and 400 mg/dL)
- Certified aqueous ethanol controls (at least three levels 0.02 - 0.40 g/dL)
 - (e.g., 0.020 g/dL, 0.150 g/dL and 0.400 g/dL)
- Internal standard (0.015% v/v aqueous solution of 1-propanol. Store at room temperature)
- Negative whole blood control
- Positive whole blood ethanol control (60 – 100 mg/dL)
 - (e.g., 80 mg/dL)
- Negative urine control (when applicable)
- Positive urine ethanol control (when applicable) (60 – 100 mg/dL)
 - (e.g., 80 mg/dL)
- Mixed volatile resolution check sample containing acetaldehyde, acetone, methanol, ethanol and 2-propanol

Procedure

Preparing Samples:

An analyst will use the same lot number of internal standard and the same diluter/dispenser when preparing samples for casework, standards and/or controls in a single day. Casework samples will be pipetted in duplicate. All samples (standards, controls and casework samples) will be allowed to come to room temperature before pipetting.

Urine DUI samples are quantitatively tested only if they are collected from subjects with hemophilia or other medical conditions as described in NRS 484C.160 #4. For urine ethanol quantitation, the subject must void the bladder fully, and then collection of a second voiding at least 20 minutes later may be used for testing. Procedures for urine analysis will be the same as those for blood, with the exception that a positive urine control and a negative urine control must be analyzed in the batch.

The process for preparing whole blood casework samples for analysis is described below. Standards and controls are prepared using the same sampling methodology.

1) Prepare a Sequence Table and label headspace vials with vial position and Lab number. Item number should be used for cases with multiple subjects, and item number and draw time should be used for cases with multiple draws.
2) Open one blood kit at a time.
3) Remove one blood tube from the kit and label with Lab number/item number, analyst’s initials, and vial position numbers as it pertains to the Blood Alcohol Sequence Table.
4) Invert the blood tube several times and/or vortex to re-suspend the blood cells.
5) Compare the Lab number/item number and vial position numbers on the blood tube label with the Lab number/item number and vial position numbers on the headspace vials.
6) Using the diluter, aspirate 100 µL of sample and dispense with 1000 µL of internal standard solution into the appropriately labeled headspace vial. Both duplicate aliquots will be pipetted at this time.
7) Flush the diluter tube as necessary between duplicate aliquots and at least twice between each case sample. Wipe withdraw tip with absorbent wipe between sampling and dispensing.
8) Cap the vials and crimp securely. A securely crimped cap should not rotate on the vial.
9) Return the blood tube to its respective blood kit.
10) Place the vials in the TurboMatrix magazine, verifying the location of each sample.

Preparing Sample Dilutions:

If the BAC > 0.400 g/100mL, the sample may be diluted to obtain a value within the range of the standard curve. A 1:2 dilution should be adequate for most cases. The process to obtain a 1:2 dilution of a sample is described below.

A 1:2 dilution of a sample is achieved as follows:
1) Change the dispensing parameters on the Diluter/Dispenser to 50 µL for the specimen and 500 µL for the internal standard.
2) Prime the Diluter/Dispenser by flushing several times.
3) Using the diluter, aspirate 50 µL of negative whole blood (use negative urine if applicable) and dispense 500 µL of internal standard solution into the labeled headspace vial. Both duplicate aliquots will be pipetted at this time.
4) Flush the diluter tube as necessary between duplicate aliquots and at least twice between each case sample. Wipe withdraw tip with absorbent wipe between sampling and dispensing.
5) Using the diluter, aspirate 50 µL of the sample and dispense 500 µL of internal standard solution into the labeled headspace vial which already contains 50 µL of negative whole blood and 500 µL of internal standard. Both duplicate aliquots will be pipetted at this time.
6) Flush the diluter tube as necessary between duplicate aliquots and at least twice between each case sample. Wipe withdraw tip with absorbent wipe between sampling and dispensing.
7) Cap the vials and crimp securely. A securely crimped cap should not rotate on the vial.
8) Return the blood tube to its respective blood kit.
9) Place the vials in the TurboMatrix magazine, verifying the location of each sample.
10) Change the multiplier factor to 2 on the blood ethanol sequence to account for the 1:2 dilution.
11) Change the dispensing parameters on the Diluter/Dispenser to 100 µL for the specimen and 1000 µL for the internal standard.
NOTE: The Dilutor/Dispenser will be checked at the relevant measurements (e.g., 50 µL and 500 µL) prior to performing sample dilutions. The requirements for checking the Dilutor/Dispenser are located in the section titled “Appendix - Quality Control Plan”. Pipettes are not to be used for performing sample dilutions for ethanol analysis.

Instrument Sequences

Standard Curve Sequence

1. 0.02 g/100mL Aqueous Standard
2. 0.08 g/100mL Aqueous Standard
3. 0.20 g/100mL Aqueous Standard
4. 0.40 g/100mL Aqueous Standard
5. 0.01 g/100mL Aqueous LOD Check

Example Sequence for a Whole Blood Ethanol Batch of 5 Samples

1. 0.02 g/100mL Aqueous Control
2. 0.15 g/100mL Aqueous Control
3. 0.40 g/100mL Aqueous Control
4. Internal Standard n-Propanol Blank
5. Positive Whole Blood Control
6. Mixed Volatile Resolution Check
7. Negative Whole Blood Control
8. Sample A
9. Sample A
10. Sample B
11. Sample B
12. Sample C
13. Sample C
14. Sample D
15. Sample D
16. Sample E
17. Sample E
18. 0.05 g/100mL Aqueous Control

Batch Acceptance Requirements:

Except as noted below, each channel is treated independently when assessing batch acceptance requirements.

Calibration:

Ethanol solutions of 20 mg/dL, 80 mg/dL, 200 mg/dL and 400 mg/dL are used to establish a linear calibration curve. A linear calibration curve must be established each day by each analyst on the utilized instrument prior to running casework samples. Ethanol results of each calibration standard must be no greater than ± 5% of the target value (for ethanol...
concentrations < 0.05 g/100mL, results must be no greater than ± 0.005 g/100mL, as calculated on the Fit Analysis Output printout. A correlation of determination (r²) value greater than or equal to 0.995 must be achieved before casework samples may be analyzed.

Limit of Detection (LOD) Check:

A positive aqueous ethanol standard of 10 mg/dL will be run with each batch to ensure that the instrument can detect ethanol at the administratively defined LOD. The LOD check can be from the same or different source than the calibration standards. To be acceptable, the computer software must identify the ethanol peak at a concentration less than 0.02 g/100mL in both channel A and channel B chromatograms.

1-Propanol Blank:

A blank consisting of only internal standard must be analyzed before casework samples in each batch. The 1-propanol blank must result in one peak consistent with 1-propanol.

Positive Whole Blood Control:

When running a batch for blood ethanol analysis, a positive whole blood control with an ethanol value between 60 – 100 mg/dL must be analyzed before casework samples in each batch. Whole blood controls must be no greater than ± 0.005 g/100mL of the calculated mean value (for ethanol concentrations > 0.100 g/100mL, results must be no greater than ± 10% of the calculated mean value).

Positive Urine Control:

When running a batch for urine ethanol analysis, a positive urine control with an ethanol value between 60 – 100 mg/dL must be analyzed before casework samples in each batch. Urine controls must be no greater than ± 0.005 g/100mL of the calculated mean value (for ethanol concentrations > 0.100 g/100mL, results must be no greater than ± 10% of the calculated mean value).

Mixed Volatile Resolution Check:

A mixed volatile resolution check consisting of five target components (acetaldehyde, acetone, methanol, ethanol and 2-propanol) must be analyzed in order to demonstrate the resolution of these components. The qualitative mixed volatile resolution check must be analyzed before casework samples in each batch and result in the resolution of the five components. If a target component peak is not named by the software, the retention time of the peak must be no greater than ± .05 seconds of the retention time from the previous run.

Negative Whole Blood Control:

When running a batch for blood ethanol analysis, a negative whole blood control (no ethanol) must be analyzed before casework samples in each batch. The negative whole blood control result must have an ethanol value of “none detected” based on reporting protocols below.
Negative Urine Control:

When running a batch for urine ethanol analysis, a negative urine control (no ethanol) must be analyzed before casework samples in each batch. The negative urine control result must have an ethanol value of "none detected" based on reporting protocols below.

Positive Aqueous Ethanol Controls:

Positive aqueous ethanol standards from a source different than the calibration standards will be used as controls. These controls will have ethanol values of 0.02-0.40 g/dL and will be analyzed before casework samples in each batch. In addition, a control will be run once every five cases (10 (5x2) samples) and the last specimen of a batch will be a control. Concentrations of positive aqueous ethanol controls of 0.050 g/dL to 0.400 g/dL must be no greater than ± 5% of their target value. For ethanol concentrations < 0.05 g/100mL, results must be no greater than ± 0.005 g/100mL.

If one positive aqueous ethanol control does not pass quality control requirements, ethanol results for casework samples in the batch that are bracketed by controls meeting quality control requirements are valid and can be reported. Casework samples that are bracketed by the failed control must be repeated. If more than one positive aqueous ethanol control does not pass quality control requirements, all samples in the batch must be repeated.

NOTE: If any of the batch acceptance requirements listed above are not met, all casework samples/vials in the batch must be re-analyzed. It is noted that even though all acceptance criteria are met within a batch, the ethanol analyst must rely on their training and experience to determine if any anomalies exist that do not fall into the categories discussed below. In these instances the analyst should discuss the anomaly/anomalies with the Toxicology Manager or Supervisor in order to determine if all or part of a batch should be repeated to ensure that the reported results are accurate. If the decision is made to repeat all or part of a batch, the discussion should be documented in the case file. If a batch is aborted due to the reasons listed above, casework samples/vials which have not been heated during the thermostat segment of the procedure may be analyzed in the next batch without re-pipetting. However, all samples/vials to be used in the next batch will have been pipetted on the same day. Any vial that has been heated during the thermostat segment in a failed batch cannot be used in any subsequent batch. Samples may be refrigerated overnight and run on the instrument the following day. All samples prepared but not run on the instrument by the following day must be re-pipetted.

Casework Replicate Sample Requirements

Four quantitative results expressed to the fourth decimal place are compared. The highest result must be no greater than ± 5% of the lowest result for 0.0500 g/100mL ≤ BAC ≤ 0.4000 g/100mL. For 0.0200 g/100mL ≤ BAC < 0.0500 g/100mL, the highest result must be no greater than ± 0.0050 g/100mL of the lowest result. For BAC < 0.0200 g/100mL, the previously stated requirements do not apply. Standard rules of rounding apply.
Reporting

The reported ethanol concentration is obtained by truncating the average of the four quantitative results to the 3rd decimal place. If $0.010 \text{ g/100mL} \leq \text{BAC} < 0.020 \text{ g/100mL}$, report “a concentration of alcohol of less than 0.020 g/100ml of blood”. If the BAC $< 0.010 \text{ g/mL}$, report “none detected”. If the result is above the highest ethanol standard used to calibrate the instrument, report greater than the highest standard (i.e., “a concentration of alcohol of greater than 0.400 g/100ml of blood”).

Sample Dilution Reporting: When using a sample dilution, the calculated BAC value is reported when the concentration of ethanol falls within the range of the standard curve ($0.020 – 0.400 \text{ g/100mL}$) prior to applying the multiplier factor. For example, if a calculated BAC = 0.554 g/100mL was obtained using a 1:2 dilution, divide 0.554 g/100mL by the multiplier factor 2. The calculated value (0.277 g/100mL) falls within the range of the standard curve. Therefore, the BAC is reported as 0.554 g/100mL.

Trace Ethanol Reporting Exception: When the BAC $< 0.020 \text{ g/100 mL}$ and the instrument identifies trace amounts of ethanol in one or more of the four results (i.e., $0.010 \text{ g/100mL} \leq \text{BAC} < 0.020 \text{ g/100mL}$) but does not identify ethanol in one or more of the other results (i.e., BAC $= 0.000 \text{ g/100mL}$), report “none detected”.

Deviations from the reporting protocol outlined above must be approved by the Toxicology Manager/Designee.

Measurement Uncertainty

Measurement uncertainty is reported for all quantitative results that fall within the range of the standard curve ($0.020 \text{ g/100mL} \leq \text{BAC} \leq 0.400 \text{ g/100mL}$), including sample dilution results that fall within the range of the standard curve prior to applying the multiplier factor. Standard rules of rounding are used to calculate measurement uncertainty results to the thousandth decimal place.

Measurement uncertainty documents are located in Qualtrax at Documents\LVMPD\Forensic Lab\Toxicology\Measurement Uncertainty. The measurement uncertainty will be reviewed and/or recalculated every two years and will be recalculated if there are procedural changes to the method that affect the quantitative measurement. The measurement uncertainty may be reviewed and/or recalculated at any time at the discretion of the Toxicology Manager.
5.1 Title: BLOOD ETHANOL CALCULATIONS (RETROGRADE EXTRAPOLATION, ANTEROGRADE EXTRAPOLATION, AND THE WIDMARK EQUATION)

Purpose and Scope
This procedure is intended to provide guidance for performing blood ethanol calculations involving retrograde and anterograde extrapolation and the use of the Widmark Equation. Because each case will contain different scenarios and information, the forensic scientist must rely on his or her training and experience to determine if and how the calculation will be performed. This procedure may also be used to estimate breath alcohol concentrations.

Principle
At blood alcohol concentrations (BACs) greater than 0.02 g/100 mL, the elimination of ethanol from the body follows zero-order kinetics, that is, alcohol is eliminated from the body at a constant rate per period of time. Therefore it is possible to estimate the BAC of an individual at a time prior to or after the blood draw if certain information is provided.

Note: At concentrations of approximately 0.01-0.02 g/100mL zero-order kinetics no longer apply. The elimination rate changes from zero-order to first-order kinetics. Retrograde extrapolation should not be performed when the BAC is 0.02 g/100 mL or less.

Retrograde Extrapolation
Retrograde extrapolation is the process of estimating an individual's blood alcohol concentration at some time prior to the time the specimen was obtained for analysis.

Retrograde extrapolation equation:
\[BAC_{time\ prior} = BAC_{blood\ draw} + \beta t \]

- \(BAC_{time\ prior} \) - BAC at a time prior to the blood draw
- \(BAC_{blood\ draw} \) - BAC at time of blood draw
- \(\beta \) - Elimination rate
- \(t \) - time between driving and blood draw

Retrograde Extrapolation Procedure:
- Determine if the subject was in the absorptive or post-absorptive phase.
 Retrograde extrapolation can only be determined if the subject was in the post-absorptive phase at the time of interest (\(BAC_{time\ prior} \)).
- \(BAC_{blood\ draw} \) and time of the blood draw and the incident must be known.
- Use appropriate ethanol elimination rate(s).
- State your assumptions.
- Decide whether your answer will be expressed as “at least” or as a range.
• Retrograde extrapolation is only an ESTIMATION. Answers should not be given to three decimal places.
• Retrograde extrapolation should not be performed when the blood alcohol concentration is 0.02 g/100 mL or less.
• If the amount or type of information that has been provided to you is not sufficient, do not perform the calculation.

Response Examples:
• Assuming an average elimination rate and that the subject was in the post-absorptive phase at the time of the incident, I would estimate her BAC to be at least 0.22 g/100 mL at 2 AM.
• I would not feel comfortable estimating the blood alcohol concentration of the subject at 11 PM, the time of driving, because I believe that the subject was still in the absorptive phase at that time.

Widmark Equation
The Widmark equation is used to perform anterograde extrapolation and to estimate the number of drinks in an individual’s system. It assumes that absorption and distribution of the entire dose of ethanol is complete and that first-pass metabolism is negligible.

Widmark equation\(^1\):
\[A = r \times p \times C \]

• A - Amount of ethanol in grams
• r - Widmark’s rho factor
 - rho (Men) = 0.68 (SD ± 0.085, CV 13%, range 0.55 to 0.86)
 - rho (Women) = 0.55 (SD ± 0.055, CV 10%, range 0.47 to 0.65)
• p - Body weight in kilograms
• C - Blood alcohol concentration in g/100 mL

Response Example:
• I would estimate that at least 3 standard drinks would need to be in the subject’s system in order to register a BAC of 0.125 g/100 mL.

Anterograde Extrapolation
Anterograde extrapolation is the process of estimating an individual’s blood alcohol concentration at a time after drinking. It may be used with the Widmark equation to determine the number of drinks in an individual’s system.

Anterograde Extrapolation Equation:
\[BAC_t = BAC_o - \beta t \]

• BAC\(_t\) - BAC at time of interest
• BAC₀ - BAC if all drinks have been absorbed, no elimination
• β - Elimination rate
• t - Number of hours between the time of interest and start of drinking

Anterograde Extrapolation Procedure:
• Determine if the subject was in the absorptive or post-absorptive phase at the time of interest. Anterograde extrapolation can only be determined if the subject was in the post-absorptive phase.
• Time the subject started drinking and time of interest, and number, type, volume, and % v/v alcohol of drinks must be given in the hypothetical.
• Use appropriate ethanol elimination rate(s).
• State your assumptions.
• Decide whether your answer will be expressed as “at least” or as a range.
• Anterograde extrapolation is only an ESTIMATION. Answers should not be given to three decimal places.
• If the amount or type of information that has been provided to you is not sufficient, do not perform the calculation.

Response Examples:
• Assuming an average elimination rate and that the subject was in the post-absorptive phase at 1 AM, the time of driving, I would estimate the subject’s BAC to be between 0.09 and 0.11 g/100 mL.
• Assuming an average elimination rate and that the subject was in the post-absorptive phase at 3 AM, I would estimate that the subject consumed at least 5 standard drinks.
• Based on this hypothetical, I would not feel comfortable estimating the subject’s BAC at 10:45 PM because I believe that the subject was still in the absorptive phase.
References
The following are some things to be considered when performing ethanol calculations. For more information see Chapter 3 in Garriott's Medicolegal Aspects of Alcohol.

Time to Reach Peak BAC after end of drinking

- Empty Stomach 30 - 60 minutes
- With Food 45 - 90 minutes
- Extraneous Circumstances 90 - 120 minutes

Mean Ethanol Elimination Rates

- Healthy adults
 - Men 0.015 g/100mL/hr
 - Women 0.018 g/100mL/hr
- DUI drivers 0.019 g/100mL/hr
- Alcoholics 0.023 g/100 mL/hr
- Exceptions Slower elimination rates for Eskimos, American Indians, Asians

In moderate drinkers 0.015 g/100mL/hr has been found to be a good average elimination rate value.

Standard drink

- Beer - 12 fl oz (5% alcohol)
- Wine - 5 fl oz (12% alcohol)
- Distilled spirit - 1.5 fl oz (80 proof - 40% alcohol)

Conversion Factors

1 fl oz = 29.6 mL
1 kg = 2.2 lb
Density of ethanol = 0.789 g/mL at room temperature

2CCI Forensic Interpretation of Alcohol, R. B. Forney, Jr.’s lecture, 2011.

5.2 Title: 1-PROPANOL INTERNAL STANDARD PREPARATION

Procedure

A. Purpose: 1-propanol is used as an internal standard in the quantitative analysis of ethanol.

B. Materials: 5000 mL Class A volumetric flask
 Pipette(s) suitable for measuring 1.5 mL
 Container large enough to hold 10 liters

C. Reagents: 1-propanol, ACS grade or better
 Distilled Water

D. Preparation of internal standard working solution: 0.015 % (v/v) 1-propanol

 1. Pipette 1.5 mL of 99.9 % 1-propanol (e.g., Alfa Aesar 41465) into a 5000 mL Class A volumetric flask.

 2. Add distilled water to the 5000 mL Class A volumetric flask to achieve a final volume of 5000 mL.

 3. Place the solution in a container large enough to hold 10 liters.

 4. Using a 5000 mL Class A volumetric flask, add an additional 5000 mL of distilled water to the container.

 5. Mix the internal standard working solution.

 6. Label the container.

 7. Transfer to labeled reagent bottles.

 8. Expiration date is one year from date of preparation or earliest expiration/use by/retest date of a component of the preparation, whichever is sooner. Store at room temperature. Discard if it becomes turbid or moldy.

 8. QC using Headspace GC-FID as outlined in section 5.6 Ethanol Analysis Quality Assurance.
5.3 Title: MIXED VOLATILE RESOLUTION CHECK

Procedure

A. Purpose: This reagent is used to demonstrate the resolution of methanol, ethanol, isopropanol, acetaldehyde, and acetone in the quantitative analysis of blood ethanol by headspace GC.

B. Materials: 100 mL volumetric flask
 Pipette(s) suitable for measuring 50 µL – 127 µL

C. Reagents: Methanol, GC grade
 Ethanol, absolute, 200 proof
 Isopropanol (2-propanol)
 Acetaldehyde
 Acetone
 Distilled Water

D. Preparation

1. Deliver to a 100mL volumetric flask:
 - 126 µL methanol
 - 50 µL acetaldehyde
 - 127 µL ethanol
 - 50 µL acetone
 - 127 µL isopropanol

2. Dilute to the fiduciary mark with distilled water.

3. Transfer to a labeled container.

4. Expiration date is one year from date of preparation or earliest expiration/use by/retest date of a component of the preparation, whichever is sooner. Store refrigerated. Protect from light.

5. QC using Headspace GC-FID as outlined in section 5.6 Ethanol Analysis Quality Assurance.
5.4 Title: POSITIVE WHOLE BLOOD ETHANOL CONTROL

Procedure

A. Purpose: A positive whole blood ethanol control is the matrix matched positive control used for whole blood ethanol analysis. This procedure describes the process for preparing an in house positive whole blood ethanol control. The positive whole blood ethanol control is typically purchased from a vendor.

B. Materials: 20 mL Class A Volumetric Flask
Analytical Balance (e.g., Tox Balance #3) or appropriate pipette

C. Reagents: Absolute Ethanol (100% Ethanol), ACS grade or better
Negative Whole Blood

D. Prepare a positive whole blood ethanol control as follows:

1) Add approximately 10 mL of negative whole blood to a 20 mL Class A volumetric flask.

2) If the control is being prepared using ethanol weight, place the 20 mL Class A volumetric flask on an analytical balance (e.g., Tox Balance #3) and tare the balance.

3) Drop by drop, add absolute ethanol to the 20 mL Class A volumetric flask. Listed below are a few examples relating target ethanol concentration and the target weight/volume of ethanol. Note that the amount of measured ethanol does not need to be exact.

<table>
<thead>
<tr>
<th>Target Ethanol Concentration (g/100mL)</th>
<th>Target Ethanol Weight (g)</th>
<th>Target Ethanol Volume (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.060</td>
<td>0.0120</td>
<td>15.2</td>
</tr>
<tr>
<td>0.080</td>
<td>0.0160</td>
<td>20.3</td>
</tr>
<tr>
<td>0.100</td>
<td>0.0200</td>
<td>25.3</td>
</tr>
</tbody>
</table>

4) Record the weight or volume of absolute ethanol added to the 20 mL Class A volumetric flask on the Toxicology Reagent Preparation Log.
5) Add negative whole blood to the 20 mL Class A volumetric flask to the fiduciary mark to achieve a final volume of 20 mL. Mix the solution.

6) Calculate the concentration of ethanol using the appropriate formula:

By Weight

\[
\frac{\text{grams of ethanol}}{20 \text{ mL}} \times \frac{100 \text{ mL}}{100 \text{ mL}} = \frac{x \text{ grams ethanol}}{100 \text{ mL}}
\]

Sample calculation when 0.0145 g of ethanol are measured:

\[(0.0145 \text{ g ethanol})/(20 \text{ mL}) \times (100 \text{ mL}) = (0.073 \text{ g ethanol/100 mL})\]

By Volume

\[
\frac{\mu\text{L of ethanol}}{20 \text{ mL}} \times \frac{0.789 \text{ g ethanol}}{1 \text{ mL}} \times \frac{1 \text{ mL}}{1000 \mu\text{L}} \times \frac{100 \text{ mL}}{100 \text{ mL}} = \frac{x \text{ grams ethanol}}{100 \text{ mL}}
\]

7) Record the ethanol concentration to three decimal places. Standard rules of rounding apply.

8) Transfer the reagent to labeled containers (typically 2 mL per container). Store in a refrigerator or freezer. When stored in the freezer, the expiration date is one year from date of preparation or earliest expiration/use by/retest date of a component of the preparation, whichever is sooner. When thawed and stored in a refrigerator, this reagent has a 30 day expiration date from the date of thawing or the expiration date or frozen preparation, whichever is sooner.

9) Experimentally determine the ethanol concentration using Headspace GC-FID as outlined in section 5.6 *Ethanol Analysis Quality Assurance.*
5.5 Title: POSITIVE URINE ETHANOL CONTROL

Procedure

A. Purpose: A positive urine ethanol control is the matrix matched positive control used for urine ethanol analysis. This procedure describes the process for preparing an in-house positive urine ethanol control. The positive urine ethanol control is typically prepared in house.

B. Materials: 20 mL Class A Volumetric Flask
Analytical Balance (e.g., Tox Balance #3) or appropriate pipette

C. Reagents: Absolute Ethanol (100% Ethanol), ACS grade or better
Negative Urine

D. Prepare a positive urine ethanol control as follows:

1) Add approximately 10 mL of negative urine to a 20 mL Class A volumetric flask.

2) Place the 20 mL Class A volumetric flask on an analytical balance (e.g., Tox Balance #3) and tare the balance.

3) Drop by drop, add absolute ethanol to the 20 mL Class A volumetric flask. Listed below are a few examples relating target ethanol concentration and the target weight/volume of ethanol. Note that the amount of measured ethanol does not need to be exact.

<table>
<thead>
<tr>
<th>Target Ethanol Concentration (g/100mL)</th>
<th>Target Ethanol Weight (g)</th>
<th>Target Ethanol Volume (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.060</td>
<td>0.0120</td>
<td>15.2</td>
</tr>
<tr>
<td>0.080</td>
<td>0.0160</td>
<td>20.3</td>
</tr>
<tr>
<td>0.100</td>
<td>0.0200</td>
<td>25.3</td>
</tr>
</tbody>
</table>

4) Record the weight or volume of absolute ethanol added to the 20 mL Class A volumetric flask on the Toxicology Reagent Preparation Log.

5) Add negative urine to the 20 mL Class A volumetric flask to the fiduciary mark to achieve a final volume of 20 mL. Mix the solution.
6) Calculate the concentration of ethanol using the following formula:

By Weight

\[
\frac{\text{grams of ethanol}}{20 \text{ mL}} \times \frac{100 \text{ mL}}{100 \text{ mL}} = \frac{x \text{ grams ethanol}}{100 \text{ mL}}
\]

Sample calculation when 0.0145 g of ethanol are measured:

\[
\frac{0.0145 \text{ g ethanol}}{20 \text{ mL}} \times 100 \text{ mL} = 0.073 \text{ g ethanol/100 mL}
\]

By Volume

\[
\frac{\mu\text{l of ethanol}}{20 \text{ mL}} \times \frac{0.789 \text{ g ethanol}}{1 \text{ mL}} \times \frac{1 \text{ mL}}{1000 \mu\text{l}} \times \frac{100 \text{ mL}}{100 \text{ mL}} = \frac{x \text{ grams ethanol}}{100 \text{ mL}}
\]

7) Record the ethanol concentration to three decimal places. Standard rules of rounding apply.

8) Transfer the reagent to labeled containers (typically 2 mL per container). Store in a refrigerator or freezer. When stored in the freezer, the expiration date is one year from date of preparation or earliest expiration/use by/retest date of a component of the preparation, whichever is sooner. When thawed and stored in a refrigerator, this reagent has a 30 day expiration date from the date of thawing or the expiration date or frozen preparation, whichever is sooner.

9) Experimentally determine the ethanol concentration using Headspace GC-FID as outlined in section 5.6 Ethanol Analysis Quality Assurance.
5.6 Title: ETHANOL ANALYSIS QUALITY ASSURANCE

Purpose:
This section describes the procedures for performing quality control checks on reagents used for ethanol analysis. The following quality control checks are performed prior to a reagent being used for casework analysis.

Reagent:

Aqueous Ethanol Standards

Aqueous ethanol standards are used for preparing the calibration curve for ethanol analysis. These standards are purchased from a vendor (e.g., Cerilliant) at the four calibration levels (20 mg/dL, 80 mg/dL, 200 mg/dL, and 400 mg/dL).

1) Frequency: New lots of aqueous ethanol standards must be analyzed two times against a valid calibration prior to being used for casework analysis.

2) Interpretation: The mean of the experimentally observed concentration, expressed to the forth decimal place, must be no greater than ± 5.0% of the manufacturer's certified value. For ethanol concentrations < 0.05 g/100mL, results must be no greater than ± 0.005 g/100mL. Standard rules of rounding apply.

3) Record your results on the QC packet. Indicate the QC method (GCHS), "passed" or "failed", and your initials. Store the QC packet in the LIMS Resource Manager.

4) See Chapter 5.0 Ethanol Analysis by Dual Column GC Headspace for routine checks run concurrently with a blood alcohol batch.

Aqueous Ethanol LOD Check

A positive aqueous ethanol standard is used to ensure that the GCHS instrument can detect ethanol at the administratively defined LOD. This standard is purchased from a vendor (e.g. Cerilliant) at 10 mg/dL.

1) Frequency: New lots of aqueous ethanol standard must be analyzed two times against a valid calibration prior to being used for casework analysis.
2) Interpretation: The observed concentration, expressed to the forth decimal place, must be no greater than 0.02 g/100mL.

3) Record your results on the QC packet. Indicate the QC method (GCHS), “passed” or “failed”, and your initials. Store the QC packet in the LIMS Resource Manager.

4) See Chapter 5.0 Ethanol Analysis by Dual Column GC Headspace for routine checks run concurrently with a blood alcohol batch.

Mixed Volatile Resolution Check

A mixed volatile resolution check consisting of five target components (acetaldehyde, acetone, methanol, ethanol and 2-propanol) is analyzed to demonstrate the resolution of these components. The mixed volatile resolution check is quality control checked as follows:

1) Frequency: Analyze each new lot number two times prior to being used for casework analysis.

2) Interpretation: The retention times obtained with the new standard must be no greater than ± 3% of the retention times that were obtained with the old standard. No extraneous peaks can be present.

3) Record your results in the LIMS Resource Manager by indicating QC method (GCHS), “passed” or “failed”, your initials, and date of QC check.

4) See Chapter 5.0 Ethanol Analysis by Dual Column GC Headspace for routine checks run concurrently with a blood alcohol batch.

1-Propanol Blank

A blank consisting of only the internal standard is analyzed to demonstrate no interference with ethanol. The 1-propanol blank is quality control checked as follows:

1) Frequency: Analyze each new lot number two times prior to being used for casework analysis.

2) Interpretation: Ensure one peak is present. It must be at the retention time for 1-propanol ± 3%.

3) Record your results in the LIMS Resource Manager by indicating QC method (GCHS), “passed” or “failed”, your initials, and date of QC check.

4) See Chapter 5.0 Ethanol Analysis by Dual Column GC Headspace for routine checks run concurrently with a blood alcohol batch.
Negative Whole Blood Control

A negative whole blood control is typically purchased from a vendor (e.g., UTAK). Alternatively, an in house preparation of a negative whole blood ethanol control can be utilized.

1) Frequency: Analyze each new lot number two times against a valid calibration prior to being used for casework analysis.

2) Interpretation: All results for ethanol must be 0.000 g/dL.

3) Record your results on the QC packet. Indicate the QC method (GCHS), “passed” or “failed”, and your initials. Store the QC packet in the LIMS Resource Manager.

4) See Chapter 5.0 Ethanol Analysis by Dual Column GC Headspace for routine checks run concurrently with a blood alcohol batch.

Positive Whole Blood Control

A positive whole blood ethanol control is typically purchased from a vendor (e.g., UTAK). The concentration of ethanol in the positive whole blood ethanol control must be between 60 – 100 mg/dL. Alternatively, an in house preparation of the whole blood ethanol control can be utilized.

For commercial positive whole blood controls:

1) Frequency: The target concentration is determined for each new lot number of material by repeated analysis and calculation of the mean concentration using valid calibrations. A new lot must be analyzed 20 times over multiple days. The quality control check should be performed by different analysts on different instruments when practical.

2) Interpretation: The mean concentration of ethanol must not fall outside of the manufacturer’s established range for a specific control lot number.

3) Record your results on the Positive Ethanol Control form. Indicate the QC method (GCHS), “passed” or “failed”, and your initials. Store the Positive Ethanol Control form and the QC packets in the LIMS Resource Manager.

4) Establishing the positive whole blood control ethanol concentration: The whole blood control ethanol concentration is determined by truncating the mean ethanol concentration to the third decimal place. The acceptable range of values is ± 0.005 g/100mL of the established concentration.

5) See Chapter 5.0 Ethanol Analysis by Dual Column GC Headspace for routine checks run concurrently with a blood alcohol batch.
For in house preparations of positive whole blood controls:

1) Frequency: The target concentration is determined for each new lot number of material by repeated analysis and calculation of the mean concentration using valid calibrations. A new lot must be analyzed 20 times over multiple days. Results shall be recorded on the Positive Ethanol Control form. The quality control check should be performed by different analysts on different instruments when practical.

2) Interpretation: The mean concentration of ethanol must be no greater than ± 10% of the calculated ethanol concentration.

3) Record your results in the LIMS Resource Manager with QC method (GCHS), your initials, and date of QC check.

4) Establishing the positive whole blood control ethanol concentration: The positive whole blood control ethanol concentration is determined by truncating the mean ethanol concentration to the third decimal place. The acceptable range of values is ± 0.005 g/100mL of the established concentration.

5) See Chapter 5.0 Ethanol Analysis by Dual Column GC Headspace for routine checks run concurrently with a blood alcohol batch.

Negative Urine Control

A negative urine control is typically prepared in house. Alternatively, a negative urine control can be purchased from a vendor.

1) Frequency: Analyze each new lot number two times against a valid calibration prior to being used for casework analysis.

2) Interpretation: All results for ethanol must be 0.000 g/dL.

3) Record your results on the QC packet. Indicate the QC method (GCHS), “passed” or “failed”, and your initials. Store the QC packet in the LIMS Resource Manager.

4) See Chapter 5.0 Ethanol Analysis by Dual Column GC Headspace for routine checks run concurrently with a blood alcohol batch.

Positive Urine Control

A positive urine ethanol control is typically prepared in house. The concentration of ethanol in the positive urine ethanol control must be between 60 – 100 mg/dL. Alternatively, a positive urine control can be purchased from a vendor.

For in house preparations of positive urine controls:
1) Frequency: The target concentration is determined for each new lot number of material by repeated analysis and calculation of the mean concentration using valid calibrations. A new lot must be analyzed 20 times over multiple days. Results shall be recorded on the Positive Ethanol Control form. The quality control check should be performed by different analysts on different instruments when practical.

2) Interpretation: The mean concentration of ethanol must be no greater than ±10% of the calculated ethanol concentration.

3) Record your results in the LIMS Resource Manager with QC method (GCHS), your initials, and date of QC check.

4) Establishing the positive urine control ethanol concentration: The positive urine control ethanol concentration is determined by truncating the mean ethanol concentration to the third decimal place. The acceptable range of values is ±0.005 g/100mL of the established concentration.

5) See Chapter 5.0 Ethanol Analysis by Dual Column GC Headspace for routine checks run concurrently with a blood alcohol batch.

For commercial positive urine controls:

1) Frequency: The target concentration is determined for each new lot number of material by repeated analysis and calculation of the mean concentration using valid calibrations. A new lot must be analyzed 20 times over multiple days. The quality control check should be performed by different analysts on different instruments when practical.

2) Interpretation: The mean concentration of ethanol must not fall outside of the manufacturer’s established range for a specific control lot number.

3) Record your results on the Positive Ethanol Control form. Indicate the QC method (GCHS), “passed” or “failed”, and your initials. Store the Positive Ethanol Control form and the QC packets in the LIMS Resource Manager.

4) Establishing the positive urine control ethanol concentration: The positive urine control ethanol concentration is determined by truncating the mean ethanol concentration to the third decimal place. The acceptable range of values is ±0.005 g/100mL of the established concentration.

5) See Chapter 5.0 Ethanol Analysis by Dual Column GC Headspace for routine checks run concurrently with a blood alcohol batch.
Positive Aqueous Controls

Positive aqueous ethanol controls are purchased from a vendor (e.g., Lipomed) and have ethanol concentrations between 0.02-0.40 g/dL. These controls have different ethanol concentrations that span the range of the standard curve (e.g., 0.020 g/dL, 0.150 g/dL, 0.400 g/dL). Note that the source of the positive aqueous controls must be different from that used for calibration of the standard curve.

1) Frequency: New lots of aqueous ethanol standards must be analyzed two times against a valid calibration prior to being used for casework analysis.

2) Interpretation: The mean of the experimentally observed concentration, expressed to the forth decimal place, must be no greater than ± 5.0% of the manufacturer's certified value. For ethanol concentrations < 0.05 g/100mL, results must be no greater than ± 0.005 g/100mL). Standard rules of rounding apply.

3) Record your results on the QC packet. Indicate the QC method (GCHS), "passed" or "failed", and your initials. Store the QC packet in the LIMS Resource Manager.

4) See Chapter 5.0 Ethanol Analysis by Dual Column GC Headspace for routine checks run concurrently with a blood alcohol batch.
6.0 Title: QUALITY ASSURANCE

6.1 Contamination Prevention
Contamination prevention should include the following:
- Work surfaces must be kept clean.
- Reusable items (glassware, spatulas, etc.) must be cleaned before use.
- Disposable items are used only once. Disposable tips for repeater pipettes are the exception. These may be reused for acid solutions, base solutions, and buffer solutions. Replace tips if contamination is present.

6.2 Reagent Preparation
6.2.1 Reagent Prep Log
A Reagent Prep Log form in the Resource Manager in LIMS is used to document reagent preparation. The log will contain the following information:
- Identity of the reagent, including concentration, pH, molarity, etc., if applicable
- Internal lot number (the six numbers following the (T) is the date the reagent was prepared)
- Initials and P# of person preparing reagent
- Expiration date of the reagent
- Ingredients and their lot numbers and expiration dates
- Item number of measuring device, if applicable
- Quality control checks performed and results
- Approval if necessary

6.2.2 Reagent Label
In addition, the container containing the reagent should bear the following information:
- Identity of the reagent
- Internal lot number
- Expiration date of reagent, if applicable
- Initials of the preparer
- Storage requirements

6.2.3 Pipettes for Methanolic Solutions
A positive-displacement pipette must be used to measure methanolic solutions for quantitative or semi-quantitative purposes.
6.3 Reference Materials
The laboratory maintains a collection of reference materials. Reference materials may be used as calibration standards in case work, for qualitative identification, for quality control purposes, and in the preparation of solutions of known concentration for use in quantitative methods.

When a reference material is used to establish a calibration curve or cutoff concentration, the reference material will be certified reference material traceable to the National Institute of Standards from an accredited reference material provider (e.g., ISO Guide 34) when available. Certified reference material may also be used to prepare controls.

Exception: Kit calibrators/controls for EMIT and ELISA may be obtained from the manufacturer.

Appropriate personal protective equipment (PPE) should be worn for safe handling of reference materials. Manufacturer’s recommendations located in the Material Safety Data Sheets/Safety Data Sheets (MSDS/SDS) are to be followed regarding storage and transportation.

6.3.1 Quality Control Checks of Drug Stock and Working Solutions
Certified Reference Material is typically diluted to prepare stock and working solutions. A stock solution represents an intermediate solution obtained by diluting CRM; a stock solution is further diluted to prepare a working solution used for routine casework analysis. This section outlines the quality control measures required for drug stock and working solutions prior to using them in casework analysis.

6.3.1.1 Drug Stock Solutions
Stock solutions do not require a quality control check via instrumental analysis. However, the preparation of stock solutions will be reviewed by a Toxicology Manager, Toxicology Supervisor or a second Forensic Scientist authorized to perform work in that discipline. The reviewer will verify that the stock solution was prepared according to the requirements of the Toxicology Technical Manual, that lot numbers and expiration dates of all ingredients written on the Reagent Prep form are correct, and that the storage container has been correctly labeled. After verifying all information, the reviewer will place their initials, P# and the date on the “Approved By/Date:” section of the Reagent Prep form. The reviewer will also initial the drug stock solution storage container to indicate that the reagent has been approved for use.

6.3.1.2 Drug Working Solutions
Newly prepared lots of working solutions will be verified using the applicable instrument method (e.g., ELISA, EMIT, GC/MS or LC/MS/MS) prior to being used for casework analysis. A typical quality control check is performed by comparing a current lot of
working solution to a newly prepared lot of working solution from a different source (e.g., a current standard working solutions is used to verify a new lot of a control working solution). Note that a newly prepared standard working solution may be verified by comparison with a newly prepared control working solution. If both the standard and the control working solutions are being quality control checked simultaneously, it is best practice to have different analysts prepare each solution.

Immunoassay working solutions (e.g., ELISA or EMIT) are quality control checked by using the entire drug screen methodology. The instrument is calibrated with a standard working solution as outlined in the method, followed by analyzing the positive control in duplicate. All QC criteria stated in the Batch Acceptance Criteria must be met. In addition, optical density/absorbance values should be comparable to previous calibrator/standard or control results.

Note: It is not necessary to run the adulterant panel on EMIT working solutions.

Confirmation working solutions (e.g., GC/MS or LC/MS/MS) are quality control checked by preparing unextracted specimens or by using the entire extraction methodology. The instrument is calibrated with a standard working solution as outlined in the method, followed by a negative control. The control working solution is checked at concentrations equal to each calibration standard used in the method. All QC criteria stated in Chapter 4.0 Confirmation Testing must be met on the batch. Note that quality control checks of new lots of Codeine/Morphine urine, Benzodiazepine urine and THCA urine standard working solutions must include the corresponding glucuronide control. The entire extraction methodology must be used.

Newly prepared lots of internal standard working solutions are quality control checked using the applicable Confirmation method (e.g., GC/MS or LC/MS/MS) in duplicate. Internal standard working solutions are quality control checked by preparing unextracted specimens or by using the entire extraction methodology. Resulting chromatograms should be free of any additional/interfering chromatographic peaks. Retention time and ion ratios (if applicable) shall pass criteria stated in chapter 4.0 Confirmation Testing.

The results of a QC check are stored in the LIMS and are documented on the “QC Method:”, “QC Result:” and “QC By/Date:” sections on the Reagent Prep log form. Both the preparation and the quality control check of a working solution will be reviewed by a Toxicology Manager, Toxicology Supervisor or a second Forensic Scientist authorized to perform work in that discipline. The reviewer will verify that the solution was prepared according to the requirements of the Toxicology Technical Manual, that lot numbers and expiration dates
of all ingredients written on the Reagent Prep form are correct, and that the storage container has been correctly labeled. After verifying all information, the reviewer will place their initials, P# and the date on the “Approved By/Date:” section of the Reagent Prep form. The reviewer will also initial the drug stock solution storage container to indicate that the reagent has been approved for use.

6.4 Controls
Positive controls are included in casework batches to monitor the calibration of each batch. Positive control data from casework batches are logged into spreadsheets and reviewed for trends by the analyst entering the data. Levy-Jennings charts are automatically updated for blood alcohol and drug confirmation QC. The analysts will indicate that they have checked the data for trends by entering their initials onto the spreadsheet. Statistical techniques are also applied to the blood alcohol and drug confirmation data when measurement uncertainty is updated.

Spreadsheets are located at:
 H:\CB\Forensics\Toxicology\Tox- QC\Blood Screens
 H:\CB\Forensics\Toxicology\Tox- QC\Urine Screens
 H:\CB\Forensics\Toxicology\Tox- QC\Blood Ethanol Control Data
 H:\CB\Forensics\Toxicology\Tox- QC\Drug Confirmation Control Data

Negative controls are included in casework batches to verify the absence of interfering substances or contamination in the reagents and materials used for that method, and to test for carryover on each batch.

6.5 Specimen Validity Testing (SVT)
SVT is performed on Department urine drug screen samples to detect substitution or adulteration. Department urine samples are tested for oxidants, specific gravity, creatinine, nitrites, and pH. SVT controls are purchased from an outside vendor.

6.5.1 Quality Control
New lots of SVT controls are analyzed in triplicate on three separate calibrations (for a total of nine data points each). The mean, lower limit, and upper limit are established for each control. The upper/lower limit range for oxidants, creatinine, nitrites, and pH is ±20% of the mean. The range for specific gravity is ±0.010 of the mean. These established values are entered into the Viva-E, WinTox, and LIMS software.

6.6 Negative Matrix
6.6.1 Negative Blood
Negative whole blood may be purchased from an outside vendor or supplied in-house. Negative whole blood purchased from vendor will be stored according to the vendor’s storage requirement. Negative whole blood supplied in-house may be stored refrigerated in the collection tubes or frozen if transferred to different storage containers.

6.6.1 Quality Control

ELISA - Analyze in duplicate against the current lot of working stock solution on a screening batch. All QC criteria stated in the *Batch Acceptance Criteria* section in Chapter 3.0 must be met on each batch. Negative whole blood results must be negative for all drug classes.

Drug Confirmation – Because several drugs have low cross-reactivity with the ELISA screen, and these drugs are confirmed if they are listed as suspected drugs on the Toxicology Request Form, new lots of negative whole blood should also be verified on the Amphetamines and Stimulants in Blood, Benzodiazepine/Z-Drugs in Blood, and Narcotic Analgesics in Blood confirmation methods prior to analyzing casework samples. The negative whole blood sample should be extracted in duplicate with internal standard on a valid curve. Negative whole blood samples should show no indications of the target drugs. It is recognized that it may not be possible to verify new lots of negative whole blood prior to confirmation. In these cases the negative whole blood may be verified as the negative control. If the negative control passes the acceptance criteria for a negative control it may be considered verified.

Blood Ethanol – See Chapter 5.6 Ethanol Analysis Quality Assurance for QC requirements.

6.6.2 Negative Urine

Negative Urine may be purchased from an outside vendor or supplied in-house. It will be stored frozen, then refrigerated once thawed.

6.6.2.1 Quality Control

EMIT - Analyze on the Viva-E in duplicate for at least a 7-panel plus adulterants. Negative urine must produce negative results for all drugs and normal results for adulterants.

Drug Confirmation – Because lorazepam has low cross-reactivity on the EMIT screen, and this drug is confirmed if it is listed as a suspected drug on the Toxicology Request Form, new lots of negative urine should also be verified on the Benzodiazepines in Urine confirmation method prior to analyzing casework samples. The negative urine sample should be extracted in duplicate with internal standard on a valid curve. Negative urine samples should show no indications of the target drug. It is recognized that it may
not be possible to verify new lots of negative urine prior to confirmation. In these cases the negative urine may be verified as the negative control. If the negative control passes the acceptance criteria for a negative control it may be considered verified.

Urine Ethanol - See Chapter 5.6 Ethanol Analysis Quality Assurance for QC requirements.

6.7 Critical Supplies

All primary reference materials are considered critical supplies. A primary reference material vendor list is available electronically in Qualtrax. Approved vendors for purchasing of critical supplies will be reviewed and should meet the following criteria:

- If available, suppliers of certified reference material used to establish or maintain measurement traceability shall be either:
 - a) a National Metrology Institute that is a signatory to the BIPM1 - CIPM Mutual Recognition Arrangement with the certified reference material listed in the BIPM key comparison database (KCDB)2, or
 - b) an accredited reference material producer that is accredited to ISO Guide 34:20094 by an accrediting body that is a signatory to a mutual or multilateral recognition arrangement in an ILAC recognized regional accreditation cooperation or the ILAC Mutual Recognition Arrangement, with a scope of accreditation covering the certified reference material.

In situations where a reference material producer that meets ISO 5.6.3.2.1 is not available, the laboratory must confirm competence, measurement capability and measurement traceability for the supplier and product being purchased. Objective evidence of the confirmation shall be available for review. In these situations, Toxicology Manager will evaluate the ability to continue using the vendor and issue a signed memo attesting to the appropriateness of the vendor.

A record of the evaluation and/or a copy of the vendor’s ISO accreditation certificate will be maintained with the vendor list, referenced above.

6.8 Chemical and Drug Inventory

Certified reference materials of quantitative solutions of drugs and metabolites are available from various vendors. Any quantitative solution that is shipped with a certificate of analysis may be used for the same purposes as the above mentioned reference material. As such CRMs are received into the laboratory; its corresponding certificate of analysis is placed on file. Quantitative certificates of analysis are kept on file for a minimum of 5 years. The manufacturer’s stated prepared concentration should be the value used if the certificate states both a prepared concentration and an analyzed concentration.
6.9 Expiration Dates
The expiration date of a chemical/reagent/reference material/native matrix is defined as the manufacturer’s expiration/use by/retest/best before/minimum shelf life date, with exceptions noted below, or elsewhere in this manual. Chemicals/reagents/reference materials/negative matrices will not be used beyond the expiration date. If a chemical/reagent/reference material/negative matrix will expire before an analysis is complete, it will not be used for the analysis. If a manufacturer updates the retest date, the updated retest date may be used when preparing new reagents if the manufacturer’s certificate of analysis on file is updated; expiration dates of previously prepared reagents will not be changed. Additionally, a stability study may be conducted at the Laboratory in order to extend expiration dates.

6.9.1 Chemicals
If a chemical is received into the lab without an expiration date, the expiration date will be researched online (e.g., Certificate of Analysis) or by contacting the manufacturer directly. This applies when using chemicals from other Details as well. If research yields no expiration date, an expiration date of five years from the date of receipt will be applied.

6.9.2 Reference Material
Reference material without an expiration will receive an expiration date of one year from date of receipt. Reference material will be stored as outlined by the manufacturer.

6.9.3 Opening Reference Material
When an ampule of reference material is opened and not entirely consumed, the remaining reference material may be transferred to a vial and capped. The open date will be noted on the vial and the expiration date will be set to the manufacturer’s expiration date or 1 year from the date of opening, whichever occurs first. The vial will be stored as outlined by the manufacturer.

6.9.4 Dilution of Reference Material
When reference material is diluted to prepare a stock or working solution, the expiration date of the newly prepared solution will be set as that of the earliest expiring reagent or 1 year from the date of preparation, whichever occurs first. Dilutions of reference material will be stored as outlined in Section 4.3.

6.9.5 Distilled Water
The expiration date of distilled water from Sparkletts, or similar vendor, will be “Until Consumed.”

Note: Sections 6.9.3 and 6.9.4 represent new criteria which apply to preparations made on or after the approval date of the May 2017 Toxicology
Technical Manual revision. Expiration dates of existing preparations will remain as listed on the reagent preparation logs.

6.9.6 In-house Negative Matrix
The expiration date of negative blood and urine supplied in-house will be set to 1 year from date of collection. The expiration date may be extended if further testing is performed to evaluate the integrity of the lot number. Once thawed, the expiration date for in-house blood and urine is 30 days.

6.10 Instrumentation
An instrument log book, located near each instrument, is maintained to document all repairs, maintenance, and record tunes (if applicable) performed on the instrument.

Maintenance on instrumentation may be performed as a result of routine preventative maintenance performed by the manufacturer, their contractors, or laboratory staff. In addition, any of these parties may undertake maintenance or troubleshooting to address problems or malfunctions. Documentation of any maintenance, repairs, or problems shall be recorded in the instrument maintenance logbooks.

6.10.1 GC/MS
GC/MS is tuned prior to use on a daily basis when employed in electron impact ionization mode. When a large GC/MS sample batch continues over multiple days, the run sequence does not need to be interrupted to tune the instrument. It is not necessary to tune the instrument on days it is not being used. GC/MS employed in chemical ionization modes should be tuned after the installation of the chemical ionization source. Additional tuning in chemical ionization modes is performed at the operator’s discretion. Tuning data will be maintained for one year at the instrument site.

6.10.2 LC/MS/MS
An autotune or checktune is performed each day the LC/MS/MS is used prior to analysis. When a large sample batch continues over multiple days, the run sequence does not need to be interrupted to tune the instrument. It is not necessary to tune the instrument on days it is not being used. Tuning data will be maintained for one year at the instrument site.

6.10.3 Immunoassay / ELISA (Blood)
Prior to analyses, a valid Self Test is performed on the screening instrument. A valid Self Test is one in which all tests pass.

6.10.4 The Artel Pipette Tracker System
The Artel Pipette Tracker System cannot operate outside of a certain temperature window per the manufacturer. No maintenance log entry is necessary because the instrument self-checks and will not allow testing to continue if temperature is not within the adequate range.
6.11 Measuring Equipment

6.11.1 Pipettes

Calibration of pipettes used for pipetting calibration standards, controls, internal standards, negative matrix, and casework samples, as well as for preparing calibration standard, control, and internal standard stock and working solutions will be checked using the Artel Pipette Tracker system on a quarterly basis, after being dropped, or if other damage is suspected. Adjustable pipettes will be checked at volumes to encompass the minimum and maximum volumes used.

Each volume will be checked four times. If extenuating circumstances cause a volume to be pipetted incorrectly, a fifth check may be performed and the incorrect volume may be discarded from the run. Data from both runs will be saved and the reason for the dropped check will be documented. If the pipette does not meet the criteria specified in Chapter 8.0- Quality Control Plan, the corrective action steps detailed in the Quality Control Plan will be followed. Refer to the Artel Manufacturer's User Manual/Guide for instructions on usage.

Pipette checks may also be completed by weighing distilled water on the TOX #3 Mettler balance (record on Toxicology Pipette Performance Check Record Form).

Results of the pipette check will be verified by the Toxicology Manager/Toxicology Supervisor/designee. Results will be stored in Resource Manager.

Note: MLA pipettes are used exclusively as transfer pipettes and are not used for the metrological preparation of calibrators, controls, negative matrix or casework samples. Therefore, MLA pipettes are not used to establish measurement traceability and do not require external annual calibration or internal performance checks.

6.11.2 Serialized Glassware

If glassware is used when diluting certified reference material to prepare calibration standard stock and working solutions, it will be serialized glassware. Serialized glassware may be used to prepare controls and internal standards.

6.11.2.1 Calibration

Serialized glassware will be calibrated by an accredited calibration service supplier prior to use. Recalibration shall recur at least once
every ten years by an appropriately accredited calibration service supplier.

6.12 Safe handling, use, transportation and storage of measuring equipment
Manufacturer’s Operating or Instruction Manuals (see Chapter 9.0 References for further details) should be referred to when there are concerns about the handling, usage, and storage of the following measuring equipment. Measuring equipment is not transported outside the Forensic Laboratory, except for repairs. Contact the manufacturer for transportation instructions.

- Balances
- Pipettes
- Diluter/dispenser
- GCHS
- GC/MS
- LC/MS/MS
- Artel Pipette Tracker system

6.12.1 Thermometers
Thermometers will be handled with appropriate personal protective equipment. When not in use, it is best to store thermometers in an upright position or at an angle of 15˚ or more. Use a special tray or rack to store thermometers properly. If deemed unsuitable for use, it will be disposed of in the appropriate receptacle. Thermometers are not transported outside of the Forensic Laboratory.

6.12.2 Glassware
Glassware used for measuring will be handled with appropriate personal protective equipment. It will be clean and inspected prior to use to be free of cracks and/or chips. If glassware is deemed unsuitable for use, it will be disposed of in an appropriate glass receptacle. Glassware is stored in the Toxicology Lab. Serialized glassware is stored in a different location than non-serialized glassware. Glassware is not transported out of the Forensic Laboratory.

6.12.2.1 Glassware used for Reagent Preparation
The preparer will rinse the glassware with methanol directly following the preparation, prior to delivering the glassware to the wash station.

6.13 Immunoassay Drug Screening
Known Possible Sources of Error:
- Cross-reactivity of structurally related compounds at certain concentrations will produce false positive qualitative results.
- Use of kits and their components at, near or beyond the stated expiration dates.
- Not allowing substrates, conjugates, standards and controls to come to room temperature prior to use.
Bubbles present in samples.
Use of pipettes which are not in working order.
Boric acid is not recommended as a preservative for urine.
Sediment in urine samples.
Sodium azide, a common antimicrobial agent, will block the activity of the enzyme horseradish peroxidase (for ELISA assays).
Interchanging plates and conjugate with different lot numbers. Kit plates and conjugate are validated based on component kit lot numbers (for ELISA assays).
Not performing a “Start of Day Wash” prior to analysis (for ELISA assays).
Substrate reagent which has developed an obvious color change.
There is possibility that substances and/or factors not listed (e.g., technical or procedural errors) may interfere with the test and cause false results.

6.14 Refresher Training

Qualified Forensic Scientists/Toxicology Supervisor who have been on leave for 90 days or more must undergo a brief refresher training prior to resuming independent casework or case review. At the minimum, refresher training will consist of the following:

- Receive an update from the Toxicology Manager/Supervisor on new policies and the current status of the Detail
- Review chapters in the Toxicology Technical Manual that pertain to their current assignment
- Read old emails
- Review Department General Orders (GO’s) and Procedural Orders (PO’s) on UMLV, if applicable

If the leave was for 180 days or more the following will also be completed:

- Complete one supervised batch of casework samples in the area of their current assignment

The Toxicology Manager/Supervisor will document the tasks of the Refresher Training on LVMPD 311 Statement of Performance Cover Page Form, and will discuss the plan with the Forensic Scientist/Toxicology Supervisor upon their return to duty.

6.15 Back-up of Electronic Records

Instrumental data are collected and/or stored in designated folders on the instrument computer. Data in the designated folders are backed up to a remote server by LVMPD’s Information Technologies Bureau (ITB). Data on the remote server are maintained indefinitely by ITB.

6.16 Method Validations

Each method listed in this manual was subjected to a validation procedure. The results of the method validations are kept in Qualtrax.
Modifications to a validated method require evaluation to confirm that the changes do not have an adverse effect on the method’s performance. The decision regarding which performance characteristics require additional validation is based on consideration of the specific parameters likely to be affected by the change(s). These changes may include, but are not limited to:

- Analytical conditions
- Instrumentation
- Sample processing
- Data software

For example, changes of extraction solvent or buffer may affect linearity, interferences, LLOQ, precision, and bias. A change of the analytical column stationary phase or a change in mobile phase composition may affect linearity and interferences. Further, consideration should be given to conducting parallel studies with known or proficiency samples utilizing both a previously validated method and the modified method to evaluate the effects of the changes. The goal is to demonstrate the impact the changes have on the performance of the previously validated procedure. (Copyright holder and publisher - AAFS Standards Board)
6.17 Proficiency Tests

6.17.1 Use of Internally Created Proficiency Tests
Internally created proficiency tests can consist of the following:

- Negative matrix (blood and/or urine) and negative matrix spiked with a known concentration of one or more analytes
- Previously analyzed casework samples
- A combination of spiked samples, negative matrix, and previously analyzed casework samples

Internally created proficiency test samples will first be analyzed by a different forensic scientist who is authorized to perform the analysis.

6.17.2 Passing Criteria for Proficiency Tests

6.17.2.1 External Tests
Vendor - College of American Pathologist (CAP)
Tests - Alcohol (blood) and drugs (blood and urine)
Passing Criteria - Acceptable grade from CAP

Vendor - Collaborative Testing Services, Inc. (CTS)
Test – Alcohol (blood)
Passing Criteria - ±25% or ± 2 SD of the grand mean

6.17.2.2 Internally Created Tests
Blood Alcohol - ±10% of initial result

Drug Screens - Results should agree with initial results, that is, samples that were previously positive or negative should result in the same. Results that were previously close to the cutoff may have the opposite result.

Drug Confirmations - ±30% of initial results

6.18 Technical and Administrative Review of QC Packets
A Technical and Administrative Review will be performed on all QC Packets prior to the review of cases. The technical reviewer will complete the Technical and Administrative Review form attached to the QC Packet.

6.19 Technical and Administrative Review of Cases
Technical and Administrative Reviews are to be conducted on all cases.

It is not necessary to access documents outside of the Lab Case/Unit Record Details in LIMS, the Quality Control Packets in Qualtrax, Measurement Uncertainty Summary, the Toxicology Technical Manual, and the Forensic Laboratory Quality Manual on a routine basis when performing technical and administrative reviews.
6.19.1 Technical Review
Refer to the Forensic Laboratory Quality Manual section 7.7.1 l) Technical Review of Technical Records and section 7.5 Technical Records. The technical reviewer will verify that:

- The evidence is adequately described
- The correct unique identifier appears on laboratory generated documents
- A Technical and Administrative Review was performed on the necessary QC packet(s)
- The tests performed comply with the Forensic Laboratory Quality Manual procedures and Toxicology technical procedures
- The requested examinations have been addressed
- The report clearly communicates the results and agrees with the analyst’s notes
- Manual calculations are correct, if applicable
- The evidence has been electronically transferred out of the analyst’s custody

When the technical review is completed in LIMS, the reviewer will complete the technical review questions in LIMS. If YES or n/a criteria are not met, the case will be returned to the analyst with feedback regarding any necessary corrections.

<table>
<thead>
<tr>
<th>Review Questions</th>
<th>Yes</th>
<th>No</th>
<th>n/a</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the evidence adequately described?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the correct unique identifier appear on laboratory generated documents?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was a Technical and Administrative Review performed on the necessary QC packet(s)?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do the tests performed comply with the Forensic Laboratory procedures and Toxicology technical procedures?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have the requested examinations been addressed?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the report clearly communicate the results, agree with the analyst’s notes, and are the conclusions supported by the notes/data?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If applicable, have manual calculations been verified?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has the evidence been electronically transferred out of the analyst’s custody?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.19.2 Administrative Review
Refer to the Forensic Laboratory Quality Manual section 7.7.1.1 Administrative Review of Technical Records. If the case is complete and
correct, document the administrative review in LIMS. In addition, verify that OJ billing activity has been completed if applicable.

<table>
<thead>
<tr>
<th>Review Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
7.0 Title: PERFORMANCE CHECK OF THE HAMILTON DILUTER/DISPENSER

Procedure

A. Purpose and Principle: The purpose of this procedure is to verify the accuracy of the dilution volume and sample volume of the Hamilton Diluter/Dispenser. A gravimetric calibration method is used. It exploits the scientific principle that one milliliter of water weighs one gram at room temperature.

B. Frequency: Perform verification monthly and after replacing any parts.

C. Use a calibrated, analytical balance capable of weighing to 0.0001 g.

D. Record on Hamilton Diluter/Dispenser Performance Check Record form. Store in Resource Manager.

E. Measure the diluent volume.

1. Adjust the settings for the diluent syringe to a volume appropriate for the intended application, for example:

 SYRINGE: 1000 µL VOLUME: 1000 µL

2. Adjust the settings for the sample syringe to either:

 SYRINGE: 100 µL VOLUME: 0 µL

3. Use distilled water at room temperature. Prime the diluter/ dispenser about 5 times and discharge the water to waste.

4. Position a clean, dry weigh boat, or equivalent receptacle on the balance. Tare the balance.

5. Load the syringe with distilled, room-temperature water. Discharge the water into the weigh boat or equivalent receptacle. Wait for the balance to stabilize and record the weight. Tare the balance. Repeat step 5 until you have obtained 10 results.

F. Measure the sample volume

1. Adjust the settings for the diluent syringe to:

 SYRINGE: 1000 µL VOLUME: 0 µL
2. Adjust the settings for the sample syringe to a volume appropriate for the intended application, for example:
 SYRINGE: 100 µL VOLUME: 100 µL

3. Follow steps 4 and 5 above.

G. Calculate the mean for the diluent syringe. Do likewise for the sample syringe. Standard rules of rounding apply.

Interpretation

Individual weights of all syringes must fall within +/- 3% of the target volume. For example:

A. Diluent Syringe (1000 µL): All weights must be 0.9700 g - 1.0300 g.
B. Sample Syringe (100 µL): All weights must be 0.0970 g - 0.1030 g.
8.0 Title: QUALITY CONTROL PLAN

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Frequency</th>
<th>Criteria</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tox #1 Continental Refrigerator</td>
<td>Internal: Check temperature once every two weeks</td>
<td>Fridge: 2 - 8°C Freezer: ≤ -15°C</td>
<td>If a refrigerator/freezer does not meet criteria:</td>
</tr>
<tr>
<td></td>
<td>External: N/A</td>
<td>Use “Refrigerator/Freezer Temperature Log” Form found in Qualtrax.</td>
<td>1. Check again within 2 hours.</td>
</tr>
<tr>
<td>Tox #4 Frigidaire Refrigerator</td>
<td></td>
<td>Forms will be completed electronically in the Resource Manager.</td>
<td>2. Check thermometer against a second NIST thermometer. Replace if needed, then go directly to step 4. If thermometer is accurate, proceed through remaining steps.</td>
</tr>
<tr>
<td>Tox #6 Sanyo Refrigerator</td>
<td></td>
<td></td>
<td>3. Adjust thermostat. Note the adjustment that was done.</td>
</tr>
<tr>
<td>Tox #7 Frigidaire Freezer</td>
<td></td>
<td></td>
<td>4. Monitor the temperature within 24 and 48 hours to ensure stability.</td>
</tr>
<tr>
<td>Tox #9 Isotemp Plus Refrigerator</td>
<td></td>
<td></td>
<td>5. If the above steps do not correct the problem, tag out of use and advise lab manager or supervisor (prepare a Corrective Action Report, if needed).</td>
</tr>
<tr>
<td>Fisher Scientific</td>
<td></td>
<td></td>
<td>NOTE: If temperature deviates more than 3 degrees outside of the acceptable range after completing step 3, move contents to an operable unit. If refrigerator/freezer appears to be malfunctioning, immediately move contents to an operable unit.</td>
</tr>
<tr>
<td>Tox #10 Whirlpool Refrigerator/Freezer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model: WRT106TFDW01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: VS64638614</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tox #11 True Refrigerator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model: GDM-49-SCI-HC-TSL01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: 9255406</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument</td>
<td>Frequency</td>
<td>Criteria</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Tox #12 True Refrigerator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model: GDM-49-SCI-HC-TSL01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: 9558563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 mL, 5mL, 10 mL Class A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serialized Volumetric Flasks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration Plan is located at</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H:\CB\Forensics\Toxicology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\Volumetric Glassware\</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumetric Glassware</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventory & Calibration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External:</td>
<td>Once every</td>
<td>Volume must fall within calibration lab’s tolerance.</td>
<td>None. If glassware does not meet calibration criteria it will be taken out of service.</td>
</tr>
<tr>
<td>10 years.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical Service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor: Rice Lake / Heusser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neweigh, LLC.</td>
<td>1-925-798-8900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument</td>
<td>Frequency</td>
<td>Criteria</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Pipettes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

External:
- Calibrate annually

Critical Service
- Vendor options:
 - Calibrate, Inc.
 - 1-800-833-0511
 - Integrated Service Solutions, Inc.
 - 1-610-287-3433
 - Quality Control Services, Inc.
 - 1-800-843-1237
 - Rice Lake / Heusser
 - Newweigh, LLC.
 - 1-925-798-8900

Internal:
- Pipettes used to pipette standards, controls, internal standards, negative matrix, and casework samples, and for preparing standard, control, and internal standard stock and working solutions will be checked quarterly.

- Note: MLA pipettes are used exclusively as transfer pipettes and are not used for the metrological preparation of calibrators, controls, negative matrix or casework samples. Therefore, MLA pipettes are not used to establish measurement traceability and do not require external annual calibration or internal performance checks.

- If a pipette is not operating properly:
 1. Repeat the test.
 2. Troubleshoot per manufacturer’s recommendations.
 3. If the pipette is still not operating properly, tag out of service.
 4. Advise lab manager or supervisor who will arrange for repair, if necessary.
 5. Prepare a Corrective Action Report, if necessary.

Performance Checks

External:
- See the Tox Diluter-Pipette Calibration Reference located at H:\CB\Forensics\Toxicology\Pipettes\Diluter-Pipette Calibration Reference for volumes to be calibrated and pass/fail accuracy percentages.
- Vendor certifications are kept in Resource Manager.

Internal:
- \(2 \mu L \leq \text{volume} < 15 \mu L \pm 5\% \) (actual or relative inaccuracy). \(CV\% \) (imprecision) should not be greater than 3.000 on the Artel® Pipette Tracker™.
- \(\text{Volume} \geq 15 \mu L \pm 3\% \) (actual inaccuracy). \(CV\% \) (imprecision) should not be greater than 3.000 on the Artel® Pipette Tracker™.
- Performance checks will be completed using the Artel® Pipette Tracker™ system, or by weighing distilled water on Tox#3 Mettler balance.
- Completed checks will be stored in Resource Manager.

After a send-out repair perform a routine check as described in Chapter 6.0 Quality Assurance.
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Frequency</th>
<th>Criteria</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tox #3</td>
<td></td>
<td>External: Calibrate annually</td>
<td>If a balance is not operating properly:</td>
</tr>
<tr>
<td>Mettler</td>
<td></td>
<td></td>
<td>1. Initiate manufacturer’s procedures to perform a mechanical internal calibration (if applicable) or external calibration.</td>
</tr>
<tr>
<td>Model: XS105DU</td>
<td>Critical Service</td>
<td></td>
<td>2. If the above steps do not correct the problem, tag out of use, advise the lab manager or supervisor (prepare a Corrective Action Report, if needed).</td>
</tr>
<tr>
<td>SN: 1127113910</td>
<td></td>
<td>See the Toxicology Balances Calibration Information located at H:\CB\Forensics\Toxicology\Balances for the minimum required levels of calibration and pass/fail accuracy information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal: Monthly performance checks, on balances that have a direct bearing on the severity of sentence (TOX # 3) – performed with ASTM 1 weight sets.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>After send-out repair, perform a monthly performance check.</td>
<td></td>
</tr>
<tr>
<td>Tox #5</td>
<td></td>
<td>External: See the Toxicology Balances Calibration Information located at H:\CB\Forensics\Toxicology\Balances for the minimum required levels of calibration and pass/fail accuracy information.</td>
<td></td>
</tr>
<tr>
<td>Ohaus</td>
<td>Critical Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model: SPX222</td>
<td></td>
<td>Internal: Monthly performance checks, on balances that have a direct bearing on the severity of sentence (TOX # 3) – performed with ASTM 1 weight sets.</td>
<td></td>
</tr>
<tr>
<td>SN: B618431040</td>
<td></td>
<td>After send-out repair, perform a monthly performance check.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fume Hoods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tox #3</td>
<td></td>
<td>External: Annually</td>
<td>If a fume hood is not operating properly:</td>
</tr>
<tr>
<td>LABCONCO</td>
<td></td>
<td></td>
<td>1. Tag out of use.</td>
</tr>
<tr>
<td>Model: 9840601</td>
<td>Internal:</td>
<td></td>
<td>2. Advise lab manager or supervisor.</td>
</tr>
<tr>
<td>SN: 050739541B</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tox #4</td>
<td>For annual certification:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABCONCO</td>
<td>Vendor Options: Controlled Environment Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model: 9840601</td>
<td>(480) 836-4144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: 050739542B</td>
<td>For repairs and maintenance:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tox #5</td>
<td>Vendor options:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABCONCO</td>
<td>Thomas and Mack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model: 7280400</td>
<td>896-7035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: 050639179H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument</td>
<td>Frequency</td>
<td>Criteria</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Tox #6 LABCONCO Model: 7280400 SN: 050639181H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Critical Thermometers

- Thermometer identifications and certification schedules are listed in Resource Manager. See Refrigerator/Freezer Temperature Log for location information.

 - **External:** N/A
 - NIST Thermometers – Replace every two years or sooner per manufacturer’s guidelines.

 - N/A

 - N/A
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Frequency</th>
<th>Criteria</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Critical Thermometers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermometer identifications, certification schedules, and locations are listed in Resource Manager.</td>
<td>External: N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>NIST Thermometers – Replace every two years or sooner per manufacturer’s guidelines</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diluter/Dispensers</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tox #6 Diluter Hamilton</td>
<td>External:</td>
<td>Critical Service</td>
<td>If the diluter/dispenser does not meet criteria:</td>
</tr>
<tr>
<td>Model: MicroLab 600</td>
<td>Calibrated annually</td>
<td>Vendor options: Calibrate, Inc. 1-800-833-0511 Integrated Service Solutions, Inc. 1-610-287-3433</td>
<td>1. Repeat test. 2. Troubleshoot per manufacturer’s recommendations. 3. Verify balance accuracy. 4. If the above steps do not correct the problem, tag out of use, advise lab manager or supervisor and prepare a Corrective Action Report, if needed.</td>
</tr>
<tr>
<td>Driver</td>
<td></td>
<td>Quality Control Services, Inc. 1-800-843-1237 Rice Lake / Heusser Neweigh, LLC. 1-925-798-8900</td>
<td></td>
</tr>
<tr>
<td>SN: ML600BD1621 Controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: MD600BC1527</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tox #7 Diluter Hamilton</td>
<td>External:</td>
<td>See the Tox Diluter-Pipette Calibration Reference located at H:\CB\Forensics\Toxicology\Pipettes\Diluter-Pipette Calibration Reference for volumes to be calibrated and pass/fail accuracy percentages.</td>
<td></td>
</tr>
<tr>
<td>Model: MicroLab 600</td>
<td>Calibrated annually</td>
<td>Vendor certifications are located in Qualtrax.</td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: ML600GH10521 Controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: ML600GG10491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tox #8 Diluter Hamilton</td>
<td>Internal:</td>
<td>Diluent and Sample syringes: weight ± 3% of volume checked Use “Hamilton Diluter/Dispenser Performance Check Record” Form located in Qualtrax.</td>
<td></td>
</tr>
<tr>
<td>Model: MicroLab 600</td>
<td>When in use: Conduct a performance check of the syringe monthly, replace as needed. Verification must be done every time any parts are replaced.</td>
<td>Logbooks and Verifications are located in Resource Manager.</td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>After send-out repair: Conduct a performance check.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: ML600GJ10733 Controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: ML600GH10667</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument</td>
<td>Frequency</td>
<td>Criteria</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Tox #9 Diluter</td>
<td>Hamilton</td>
<td>Diluter/Dispensers not used routinely (stored and used as back-ups)</td>
<td>Adjust temperature setting until thermometer displays temperature appropriate for procedure. If the oven cannot maintain the appropriate temperature, tag out of use, advise lab manager or supervisor and prepare a Corrective Action Report, if needed.</td>
</tr>
<tr>
<td>Hamilton</td>
<td>(800) 648-5950</td>
<td>shall have a performance check conducted prior to use and monthly thereafter if kept in use.</td>
<td></td>
</tr>
<tr>
<td>Model: MicroLab 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: ML600JB12659</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: ML600JB12678</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tox #1 Oven (Gravity Oven)</td>
<td>External:</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>VWR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model: 1330 GM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: 1000599</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument</td>
<td>Frequency</td>
<td>Criteria</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>GC/MS</td>
<td></td>
<td></td>
<td>At a minimum, attempt the following corrective action if any of the performance checks fail:</td>
</tr>
<tr>
<td>Tox #9 GCMS</td>
<td></td>
<td></td>
<td>1. Repeat test.</td>
</tr>
<tr>
<td>GC</td>
<td></td>
<td></td>
<td>2. Troubleshoot using manufacturer’s recommendations as outlined in the Chemstation Users Guide.</td>
</tr>
<tr>
<td>Model: Agilent 7890A</td>
<td>External: Refer to specific instrument contract/agreement for appropriate support phone numbers and service agreement</td>
<td>Internal: MS performance - Autotune must be performed each day that the instrument will be used, prior to analysis. N<sub>2</sub> should not be greater than 10% for EI mode.</td>
<td>3. Call for technical support.</td>
</tr>
<tr>
<td>SN: CN10521043</td>
<td></td>
<td></td>
<td>4. Tag out of use.</td>
</tr>
<tr>
<td>MS</td>
<td></td>
<td></td>
<td>5. Advise lab manager or supervisor and call for a service engineer.</td>
</tr>
<tr>
<td>Model: Agilent 5975C</td>
<td></td>
<td></td>
<td>6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>SN: US10523720</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal: Before use (once/day) and after send-out repair.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance (monthly):</td>
<td>Check rough pump oil.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance (as needed):</td>
<td>Change septum & liner, clean source, change gold seal, trim/replace column, change syringe.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logbooks are located in lab area near equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC/MS/MS</td>
<td></td>
<td></td>
<td>At a minimum, attempt the following corrective action if any of the performance checks fail:</td>
</tr>
<tr>
<td>Tox #1 LCMSMS</td>
<td></td>
<td></td>
<td>1. Repeat test.</td>
</tr>
<tr>
<td>LC</td>
<td></td>
<td></td>
<td>2. Troubleshoot using manufacturer’s recommendation as outlined in the MassHunter Users Guide.</td>
</tr>
<tr>
<td>Model: Agilent 1260 Infinity Series</td>
<td>External: Refer to specific contract/agreement for appropriate support phone numbers and service agreement</td>
<td>Internal: MS performance – Checktune must be performed each day the instrument will be used, prior to casework or QC check analysis. The tune must be performed in the polarity mode(s) used for</td>
<td>3. Call for technical support.</td>
</tr>
<tr>
<td>SN: See instrument maintenance manual for separate components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model: Agilent 6420 MS/MS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: SG15277008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument</td>
<td>Frequency</td>
<td>Criteria</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Tox #2 LCMSMS</td>
<td></td>
<td>analysis and the tune report must indicate “Pass”</td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>LC</td>
<td></td>
<td>for the range of m/z values used for analysis (e.g., for THCA_U: positive ESI tune - “Pass” indicated on tune report for m/z values 118.09 – 622.03).</td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Model: Agilent 1260 Infinity</td>
<td></td>
<td>Autotune must be performed monthly or as needed. Once the EMV value registers 2400, the electron multiplier should be changed.</td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Series</td>
<td></td>
<td>Logbook is located in lab area near equipment.</td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>SN: See instrument maintenance</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>manual for separate components</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>MS</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Model: Agilent 6420 MS/MS</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>SN: SG17509007</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Dynex Magellan</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Biosciences</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Model: DSX Automated ELISA System</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>SN: 1 DXC-2090</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Siemens EMIT Analyzer</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Model: Viva-E</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>SN: 15-2411</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Orasure Technologies Inc</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>(800) 869-3538</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Dade-Behring</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>(800) 227-8994</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>External:</td>
<td>External:</td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Refer to specific instrument</td>
<td>Meet external vendor</td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>contract/agreement for</td>
<td>criteria.</td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>appropriate support phone numbers and service agreement</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>External (EMIT Only): Preventive maintenance semi-annually</td>
<td>Maintain weekly & monthly cleaning schedule.</td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Internal (EMIT Only): before use (once/day), weekly & monthly & quarterly</td>
<td></td>
<td></td>
<td>1. Repeat test. 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Instrument</td>
<td>Frequency</td>
<td>Criteria</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>BA #3 GC</td>
<td>External: Refer to specific instrument contract/agreement for appropriate support phone numbers and service agreement.</td>
<td>External: Meet external vendor criteria. Internal: Refer to Chapter 5.0 Ethanol Analysis by Dual Column Headspace for Batch Acceptance Criteria. Maintenance(as needed): Change O-rings, carbide discs, column, and needle.</td>
<td>At a minimum, attempt the following corrective action if any of the performance checks fail: 1. Repeat test 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Perkin Elmer TurboMatrix 110 Model: Clarus 500 GC Part #: N6519100 SN: 650N6061207 HS SN #: HS110L0606128</td>
<td>Internal: before use (once/day) and after send-out repair.</td>
<td>Instrument/Maintenance Logbooks are located in lab area near equipment (Internal criteria checks are kept with batch data separate from the instrument logbook).</td>
<td></td>
</tr>
<tr>
<td>BA #4 GC</td>
<td>External: Refer to specific instrument contract/agreement for appropriate support phone numbers and service agreement.</td>
<td>External: Meet external vendor criteria. Internal: Refer to Chapter 5.0 Ethanol Analysis by Dual Column Headspace for Batch Acceptance Criteria. Maintenance(as needed): Change O-rings, carbide discs, column, and needle.</td>
<td>At a minimum, attempt the following corrective action if any of the performance checks fail: 1. Repeat test 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Perkin Elmer TurboMatrix 110 Model: Clarus 500 GC Part #: N6519580 SN: 580S11033102 HS SN #: HS110L1103283</td>
<td>Internal: before use (once/day) and after send-out repair.</td>
<td>Instrument/Maintenance Logbooks are located in lab area near equipment (Internal criteria checks are kept with batch data separate from the instrument logbook).</td>
<td></td>
</tr>
<tr>
<td>BA #5 GC</td>
<td>External: Refer to specific instrument contract/agreement for appropriate support phone numbers and service agreement.</td>
<td>External: Meet external vendor criteria. Internal: Refer to Chapter 5.0 Ethanol Analysis by Dual Column Headspace for Batch Acceptance Criteria. Maintenance(as needed): Change O-rings, carbide discs, column, and needle.</td>
<td>At a minimum, attempt the following corrective action if any of the performance checks fail: 1. Repeat test 2. Troubleshoot using manufacturer’s recommendations. 3. Call for technical support. 4. Tag out of use. 5. Advise lab manager or supervisor and call for a service engineer. 6. Record problem in the instrument maintenance manual or, if necessary, on a Corrective Action Report.</td>
</tr>
<tr>
<td>Perkin Elmer TurboMatrix 110 Model: Clarus 580 GC Part #: N6519580 SN: 580S11033102 HS SN #: HS110L1103283</td>
<td>Internal: before use (once/day) and after send-out repair.</td>
<td>Instrument/Maintenance Logbooks are located in lab area near equipment (Internal criteria checks are kept with batch data separate from the instrument logbook).</td>
<td></td>
</tr>
<tr>
<td>ARTEL Pipette Tracker® Model: PCS3 Part #: PCS-103 SN: 7-9152</td>
<td>External: Every other year Artel® (888) 406-3463</td>
<td>External: Meet external vendor criteria. Internal: Meet external vendor criteria as described in the manufacturer’s procedure guide. Logbook is located in Resource Manager.</td>
<td>If monthly calibration verification is not successful, the vendor will be contacted.</td>
</tr>
<tr>
<td>Pipette Calibration Check System</td>
<td>Internal: Monthly After send-out repair: Perform a monthly calibration.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Generator</td>
<td>External: None</td>
<td>Internal: Maintains pressure and produces hydrogen gas.</td>
<td>If the generator does not meet criteria: 1. Tag out of use.</td>
</tr>
<tr>
<td>Instrument</td>
<td>Frequency</td>
<td>Criteria</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>HG #6</td>
<td></td>
<td>Parts contained in vendor 6 month maintenance kit should be replaced</td>
<td>2. Troubleshoot using appropriate manufacturer’s manual.</td>
</tr>
<tr>
<td>Parker Hannifin</td>
<td></td>
<td></td>
<td>3. Advise lab manager or supervisor.</td>
</tr>
<tr>
<td>SN: 15PHG5058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HG #7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parker Hannifin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model: H2PEM-510-L1466</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: 17PHG5O66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen Generator</td>
<td>External:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG #1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Scientific</td>
<td>External:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model: NM32LA</td>
<td>Annually</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: A16-01-163</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG #2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Scientific</td>
<td>Internal:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model: NM32LA-A</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN: 771040846</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logbooks are located in lab area near equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Generator Water Check forms (document number 13269) are stored in Resource Manager.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logbook is located in lab area near equipment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If the generator does not meet criteria: 1. Tag out of use.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Troubleshoot using appropriate manufacturer’s manual.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Advise lab manager or supervisor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Contact manufacturer’s technical support.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.0 Title: APPENDIX - REFERENCES

Equipment Manuals
The manufacturer’s manuals for the following equipment are located within the Toxicology Laboratory:

GC/MS
Operator’s Manual Viva-E Drug Testing System (Corresponding to Software Version No: 2.0)

Quick Reference Guide for GC 7890A

LC/MS/MS
Operating guides are found on the instrument computer at C:\Familiarization\Manuals

DSX
Operator’s Manual for DSX Automated ELISA System (For Revelation 6.0 and above)

Viva-E
Siemens Viva-E Operators Manual

WinTox6 Basic User Guide (iMS) 6.8.32

GCHS
TurboMatrix Headspace Sampler and HS 40/110 Trap User’s Guide, Perkin Elmer, November 2005
Turbomatrix Headspace Samplers Instrument Manual, Perkin Elmer, April 2000
Clarus 500 GC User’s Guide, Perkin Elmer, August 2002
Clarus 500 GC Installation Guide, Perkin Elmer, August 2002

Clarus 500/580 GC Installation Guide, Perkin Elmer

Pipettes/Diluters

Hamilton User’s Manual, Microlab 600 Series, ML600 Basic Manual, Hardware Installation and Basic Operation (Rev.C)

Hamilton User's Manual, Microlab 500A Series (Rev. D)

Eppendorf Repeater stream, Repeater Xstream Operating Manual

Eppendorf Research Instruction Manual

Eppendorf Repeater M4 Manual

MLA Pipette Operator’s Manual

Balances

Mettler Toledo Excellence XS Analytical Balances Operation Instructions

Operating Instructions Mettler Toledo PG-S Balances (0.001 g, 0.01 g), 1998

Pipette Calibration

Pipette Calibration System

- Artel PCS3 Procedure Guide
- Artel PCS3 Validation Guide
- Artel Pipette Tracker User Manual (Rev 15S5820D, August 2011)

General References:

OraSure Technologies, Inc., Package Inserts

Immunalysis, Inc., Package Inserts

Siemens Package Inserts

LVMPD FORENSIC LABORATORY
TECHNICAL PROCEDURES
TOXICOLOGY

9.1 Title: APPENDIX - ABBREVIATIONS KEY

Abbreviations Key
⊕, POS - positive
⊖, NEG – negative
7AC – 7-aminoclonazepam
11-OH-THC - 11-hydroxy- Δ9-tetrahydrocannabinol
ACQ – acquisition
Adult - adulterants
AG, AGY - agency
ALP- alprazolam
AM, AMP, AMPH – amphetamine
BA – blood alcohol
B/C - barcode
BENZO, BENZ, BZ, Benzodiazep – benzodiazepines
BLNK, BLK – blank
BSTFA - N,O-Bis(trimethylsilyl)trifluoroacetamide
BZE - benzoylecgonine (cocaine metabolite)
CAL – calibrator
CALIB - calibration
CARI, CAR – carisoprodol
CE - cocaethylene
CHROM - chromium
CF – correction factor
CLON, CLN - clonazepam
COC, COCN, C – cocaine
CO, CU, CUT, C/O - cutoff
COD – codeine
CR, CREAT – creatinine
CRM – certified reference material
CTRL, CTL – control
CV – coefficient of variation
dAbs/m – delta absorbance per minute
DA – District Attorney
DEF – deferred
DI - deionized
DIAZ – diazepam
DS – drug screen
DS DEF – deferred from drug screening
EBT – evidential breath test
EI – electron impact
ELISA – enzyme-linked immunosorbent assay
EMIT – enzyme-multiplied immunoassay technique
EMV- electron multiplier voltage
ESI – electrospray ionization
ETHAN, EtOH – ethanol
EV #, EN – event number
EVI – evidence
EXP – expiration
FA – formic acid
FA – further analysis
FA – Forensic Advantage
FEN – fentanyl
FLU - flunitrazepam
FN – first name
GC – gas chromatograph
GCHS – headspace gas chromatograph
GCMS, GC/MS – gas chromatograph/mass spectrometer
GHB – gamma hydroxy-butyrate
HI – high
HMDS - Bis(trimethylsilyl)amine aka hexamethyldisilazane
HYC – hydrocodone
HYM - hydromorphone
IMM - Immunalysis
INT STD, ISTD, IS – internal standard
KIO - kit individually opened
LC – liquid chromatography
LCMS, LC/MS – liquid chromatography/mass spectrometry
LC/MS/MS,– liquid chromatography tandem mass spectrometry
LIMS - Laboratory Information Management System
LN – last name
LORAZ, LOR - lorazepam
MDA - 3,4-methylenedioxyamphetamine
MDMA - 3,4-methylenedioxymethamphetamine
MEPRO, MEP - meprobamate
METH, MAMP – methamphetamine
6-AM, 6-MAM – 6- acetyl morphine
MOR – morphine
MPH - methylphenidate
MRM – multiple reaction monitoring
MSD – mass selective detector
MTD - methadone
N-PROP – n-propanol
N/A – not applicable
NA – narcotic analgesic
NCAL – negative calibrator
NCS – no controlled substances
NFA – no further analysis
NM - name
NORDIAZ, NORD – nordiazepam
NT, NIT - nitrate
OH-ALP - α-hydroxyalprazolam
OH-TRIAZ - α-hydroxytriazolam
OD – optical density
ODT – o-desmethyltramadol
OF – oral fluid
OR - object repository
ORS - OraSure
OPI, OP, OPIA – opiates
OX - oxidant
OXAZ – oxazepam
OXC, OXY, OXYC - oxycodone
OXM, OXYM – oxymorphone
P# - LVMPD personnel number
PBT – preliminary breath test
PC - Property Connect
PCP - phencyclidine
PC Sgt. - Property Crimes Sergeant
PFAA - pentafluoropropionic acid anhydride
PFTBA – perfluorotributylamine
PHEN - phentermine
PI – personal identifiers
PN – part number
POI - persons of interest
PREP – preparation
PSI – pounds per square inch
PTFE – polytetrafluoroethylene
QC – quality control
QNS – quantity not sufficient
QS – quantity sufficient
REQ - request
RFLE - Request for Forensic Laboratory Examination
RGT – reagent
RM – Resource Manager
RPT – repeated
RRT – relative retention time
RT – retention time
SD – standard deviation
SEP – separation
SDS - safety data sheet
SOLN, SLN – solution
SPE – solid phase extraction
SG, SPGR, SP.GR. – specific gravity
SN – serial number
S/N – signal to noise
STD – standard
SU – suspect
SVT – specimen validity testing
TARG - target
TEMAZ, TEM – temazepam
TFE - tetrafluoroethylene
T, THC - Δ⁹-tetrahydrocannabinol
THCA - 11-nor-9-carboxy-Δ⁹-tetrahydrocannabinol (Marijuana metabolite)
TIC – total ion chromatogram
TOX – toxicology
TRM - tramadol
TMCS - trimethylchlorosilane
TRIAZ – triazolam
UC – until consumed
UoM, MU – measurement uncertainty
UR - unit record, urine
V- volts, volume
WB – whole blood
WBC – whole blood control
XTC, EX – ecstasy (see MDMA)
ZAL – zaleplon
ZOL – zolpidem
ZOP - zopiclone
9.2 Title: APPENDIX – SOFTWARE VERSIONS

Toxicology
Computer Software Versions

<table>
<thead>
<tr>
<th>INSTRUMENT</th>
<th>INSTRUMENT NAME</th>
<th>SOFTWARE VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/MS</td>
<td>Tox #9</td>
<td>Chemstation E.02.01.1177</td>
</tr>
<tr>
<td>LC/MS/MS</td>
<td>Tox #1</td>
<td>MassHunter Workstation Data Acquisition: B.08.00 Quantitative Analysis: B.07.01 Qualitative Analysis: B.07.00</td>
</tr>
<tr>
<td></td>
<td>Tox #2</td>
<td>MassHunter Workstation Data Acquisition: B.08.02 Quantitative Analysis: B.08.00 Qualitative Analysis: B.08.00</td>
</tr>
<tr>
<td>GC/HS</td>
<td>GC#3, GC #4, GC #5</td>
<td>TotalChrom Workstation 6.3.2.0646</td>
</tr>
<tr>
<td>Immunoassay</td>
<td>Dynex DSX ELISA</td>
<td>Revelation: v.6.24</td>
</tr>
<tr>
<td>Immunoassay</td>
<td>Siemens EMIT®</td>
<td>Syva Viva-E Analyzer: v.2.0.14</td>
</tr>
<tr>
<td>Immunoassay</td>
<td>Siemens EMIT®</td>
<td>WinTox 6: v.6.8.79-0</td>
</tr>
<tr>
<td>Pipette Calibration System</td>
<td>ARTEL Pipette Tracker®</td>
<td>Pipette Calibration System v1.2.2</td>
</tr>
</tbody>
</table>